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Abstract. The performance of 18 European institutions in-

volved in long-term non-methane hydrocarbon (NMHC)

measurements in ambient air within the framework of the

Global Atmosphere Watch (GAW) and the European Mon-

itoring and Evaluation Programme (EMEP) was assessed

with respect to data quality objectives (DQOs) of ACTRIS

(Aerosols, Clouds, and Trace gases Research InfraStructure

Network) and GAW. Compared to previous intercomparison

studies the DQOs define a novel approach to assess and en-

sure a high quality of the measurements. Having already been

adopted by GAW, the ACTRIS DQOs are demanding with

deviations to a reference value of less than 5 % and a repeata-

bility of better than 2 % for NMHC mole fractions above

0.1 nmol mol−1.
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The participants of the intercomparison analysed two

dry gas mixtures in pressurised cylinders, a 30-component

NMHC mixture in nitrogen (NMHC_N2) at approximately

1 nmol mol−1 and a whole air sample (NMHC_air), follow-

ing a standardised operation procedure including zero- and

calibration gas measurements. Furthermore, participants had

to report details on their instruments and assess their mea-

surement uncertainties.

The NMHCs were analysed either by gas

chromatography–flame ionisation detection (GC-FID)

or by gas chromatography–mass spectrometry (GC-MS).

For the NMHC_N2 measurements, 62 % of the reported

values were within the 5 % deviation class corresponding

to the ACTRIS DQOs. For NMHC_air, generally more

frequent and larger deviations to the assigned values were

observed, with 50 % of the reported values within the

5 % deviation class. Important contributors to the poorer

performance in NMHC_air compared to NMHC_N2 were

a more complex matrix and a larger span of NMHC mole

fractions (0.03–2.5 nmol mol−1). The performance of the

participating laboratories were affected by the different mea-

surement procedures such as the usage of a two-step vs. a

one-step calibration, breakthroughs of C2–C3 hydrocarbons

in the focussing trap, blank values in zero-gas measurements

(especially for those systems using a Nafion® Dryer),

adsorptive losses of aromatic compounds, and insufficient

chromatographic separation.

1 Introduction

Volatile organic compounds (VOCs) are important atmo-

spheric trace gases with anthropogenic and biogenic emis-

sions (e.g. Koppmann, 2007; Warneck, 1988, and references

therein). VOCs include a large variety of non-methane hy-

drocarbons (NMHCs, mostly from C2–C16) such as alkanes,

alkenes, alkynes, aromatic compounds, and terpenoids as

well as oxygenated VOCs (OVOCs) such as alcohols, alde-

hydes, and ketones (Andreae and Merlet, 2001; Monks et al.,

2009; Placet et al., 2000; Plass-Duelmer et al., 1993; Sawyer

et al., 2000). The mole fractions of these compounds vary

from below 1 pmol mol−1 to tens of nmol mol−1 in back-

ground and urban air, respectively (e.g. Gros et al., 2007;

Parrish and Fehsenfeld, 2000). Atmospheric VOCs have an

impact on the oxidising capacity of the atmosphere through

their role in the generation of photo-oxidants (e.g. ozone

and organic radicals) and are precursors of secondary or-

ganic aerosols. For these reasons, reliable measurements of

VOCs are essential, and they are consequently included in

the long-term monitoring programmes of the Global Atmo-

sphere Watch (GAW) of the World Meteorological Organi-

zation (WMO, 2007a), regional programmes such as the Eu-

ropean Monitoring and Evaluation Programme (EMEP), and

national air pollution monitoring networks.

In Europe the measurement capacity for VOCs in the at-

mosphere is diverse. On the one hand, several laboratories

maintain long-term and high-quality measurements based

on sophisticated quality assurance/quality control (QA/QC)

systems, high-quality standard gases, previous intercompar-

ison activities, and audits by the World Calibration Cen-

tre for VOCs. On the other hand, the performance of other

laboratories is limited by a lack of such quality measures

and by the fact that there are no commonly agreed-upon

guidelines concerning standards, homogenised quality assur-

ance procedures and measurement methods. In Table 1 of

the WMO GAW Report No. 171 (WMO, 2007b) 17 prior-

ity VOCs (NMHCs and oxygenated VOCs) were identified

and general quality assurance recommendations were de-

fined (Table 2). The European infrastructure network project

ACTRIS (Aerosols, Clouds, and Trace gases Research In-

fraStructure) has expanded the priority substances to fur-

ther NMHCs described in Table 1. Furthermore, measure-

ment guidelines and a quality management system were de-

veloped under ACTRIS to harmonise trace gas measure-

ments of NMHCs in Europe (http://www.actris.net/Project/

WorkPackages/WP4/tabid/4428/Default.aspx). One objec-

tive of ACTRIS was to assess the current NMHC measure-

ment capacity in Europe and to investigate the analytical per-

formance of laboratories in terms of data quality objectives

(DQOs) for repeatability and uncertainty. Strict DQOs were

defined in ACTRIS (Table 2) and were adopted by the GAW

Scientific Advisory Group for Reactive Gases during their

meeting in October 2014. Whilst in the WMO GAW Re-

port No. 171 DQOs are defined for accuracy and precision,

these have been replaced in ACTRIS with uncertainty (in

the sense of expanded combined uncertainty with coverage

factor k = 2; JCGM, 2008) and repeatability (which charac-

terises the short-term standard variation in multiple measure-

ments).

VOC species are normally measured with gas chromatog-

raphy coupled to either a flame ionisation detector (GC-FID)

or a mass spectrometer (GC-MS). Furthermore, proton trans-

fer reaction mass spectrometry (PTR-MS) is also used for the

measurement of oxygenated VOCs, terpenoids, dialkenes,

and aromatics. While PTR-MS analyses VOCs from air sam-

ples directly, GC-based techniques need a preconcentration

step. Here VOCs are either analysed immediately after sam-

pling onto suitable adsorbents (online) or they are collected

in specially treated steel or glass cylinders or on cartridges

filled with adsorbents and analysed later in the laboratory

(offline). Problems which can occur are chemical reactions

in the samples (due to e.g. reactions with ozone), adsorptive

losses, memory effects or leaks, losses during the precon-

centration and the desorption steps, chemical reactions dur-

ing thermal desorption, insufficient separation on the chro-

matographic column and misidentification, peak overlap, and

inaccurate quantification (Helmig, 1997, 1999; Helmig and

Vierling, 1995; Koppmann et al., 1995; Parrish and Fehsen-
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Table 1. Assigned mole fractions (error-weighted means with expanded uncertainties) for NMHC_N2 and NMHC_air (nmol mol−1).

Error-weighted mean ± expanded uncertainty (nmol mol−1)

NMHC_N2 NMHC_air

cylinder 1 cylinder 2 cylinder 1 cylinder 2

Alkanes

ethane 1.071± 0.016 1.118± 0.016 1.871± 0.037 1.904± 0.041

propane 1.061± 0.014 1.104± 0.015 1.608± 0.025 1.611± 0.023

n-butane 1.025± 0.028 1.076± 0.015 1.407± 0.019 1.407± 0.015

methylpropane 1.051± 0.011 1.114± 0.013 0.778± 0.026 0.765± 0.024

n-pentane 1.031± 0.012 1.092± 0.017 0.834± 0.012 0.834± 0.014

2-methylbutane 1.011± 0.011 1.075± 0.014 1.669± 0.029 1.654± 0.028

n-hexane 1.019± 0.013 1.083± 0.014 0.157± 0.006 0.151± 0.006

2-methylpentane 1.025± 0.014 1.089± 0.014 0.343± 0.025 0.348± 0.021

3-methylpentane 0.195± 0.009 0.194± 0.008

2,2-dimethylbutane 0.257± 0.038 0.256± 0.033

2,3-dimethylbutane 0.070± 0.020 0.072± 0.020

cyclohexane 0.140± 0.005a 0.141± 0.009a

n-heptane 1.011± 0.011 1.077± 0.012 0.443± 0.008 0.463± 0.010

n-octane 1.011± 0.021 1.076± 0.023 0.443± 0.008a 0.463± 0.010a

2,2,4-trimethylpentane 1.028± 0.012 1.095± 0.012 0.145± 0.008a 0.144± 0.008a

Alkenes

ethene 1.065± 0.015 1.127± 0.015 2.531± 0.034 2.532± 0.035

propene 1.030± 0.013 1.091± 0.016 0.571± 0.020 0.552± 0.014

1-butene 1.007± 0.031 1.070± 0.033 0.114± 0.006a 0.109± 0.006a

2-methylpropene 0.858± 0.039a 1.081± 0.049a

trans-2-butene 1.024± 0.018 1.088± 0.019 0.074± 0.003a 0.075± 0.003a

cis-2-butene 1.008± 0.011 1.069± 0.013 0.066± 0.002 0.067± 0.002

1,3-butadieneb 1.024± 0.025 1.087± 0.024 0.066± 0.011 0.062± 0.014

1-pentene 1.001± 0.012 1.086± 0.036 0.048± 0.014a 0.044± 0.013a

trans-2-pentene 0.984± 0.015 1.042± 0.018 0.057± 0.004 0.058± 0.004

cis-2-penten 0.033± 0.003 0.032± 0.003

2-methyl-2-butene 0.125± 0.020 0.121± 0.006

isopreneb 2.039± 0.038 2.178± 0.034 0.021± 0.008 0.022± 0.006

Alkynes

ethyne 1.020± 0.026 1.118± 0.024 1.467± 0.032 1.485± 0.039

propyne 0.065± 0.019a 0.065± 0.017a

Aromatic compounds

benzene 1.022± 0.012 1.091± 0.013 0.460± 0.006 0.458± 0.007

toluene 1.021± 0.048 1.222± 0.039 1.709± 0.059 1.737± 0.055

ethylbenzene 1.017± 0.057 1.182± 0.057 0.245± 0.010 0.247± 0.008

m,p-xylene 2.035± 0.117 2.569± 0.108 0.884± 0.038 0.882± 0.036

o-xylene 1.047± 0.097 1.180± 0.095 0.279± 0.019 0.282± 0.023

a Assigned mole fractions were determined only with results from HPB; b arithmetic mean of measurements instead of

error-weighted mean. Compounds: priority VOCs as defined in the WMO GAW Report No. 171 (WMO, 2007b). Further

WMO GAW priority VOCs which were not investigated here: monoterpenes, dimethylsulfide, formaldehyde, methanol,

ethanol, acetone, acetonitrile.

feld, 2000; Plass-Duelmer et al., 2002; Rudolph, 1999; West-

berg and Zimmerman, 1993).

Several NMHC intercomparisons have been carried out

in the past on European and global scales. Generally, these

aimed at an evaluation of the quality of VOC measure-

ments without data quality objectives defining a thresh-

old to differentiate between higher- and lower-quality data

(e.g. NOMHICE: Apel et al., 1994, 1999, 2003; AMOHA:

www.atmos-meas-tech.net/8/2715/2015/ Atmos. Meas. Tech., 8, 2715–2736, 2015
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Table 2. ACTRIS and former GAW1 data quality objectives (DQOs). Numbers express the expanded uncertainty (coverage factor k = 2),

and the repeatability (standard deviation).

GAW1 GAW1 ACTRIS2 ACTRIS2

uncertainty repeatability uncertainty repeatability

alkanes 10 % 5 % 5 % 2 %

alkenes incl. isoprene 20 % 15 % 5 % 2 %

alkynes 15 % 5 % 5 % 2 %

aromatics 15 % 10 % 5 % 2 %

mole fraction 0.02 ppb 0.015 ppb 0.005 ppb 0.002 ppb

< 0.1 nmol mol−1 (ppb)

1 From WMO GAW Report No. 171 (WMO, 2007b); 2 GAW VOC Expert Group and the GAW Scientific

Advisory Group for Reactive Gases during their meetings in Daejong (South Korea, Oct 2014) as new GAW

DQOs.

Plass-Duelmer et al., 2006; Slemr et al., 2002; GAW: Rap-

penglueck et al., 2006; Bernardo-Bricker et al., 1995; De

Saeger and Tsani-Bazaca, 1993; Hahn, 1994; Pérez Ballesta

et al., 2001; Romero, 1995; Volz-Thomas et al., 2002).

NOMHICE (Nonmethane Hydrocarbon Intercomparison Ex-

periment) and AMOHA (Accurate Measurements of Hydro-

carbons in the Atmosphere) were two systematic multistage

intercomparisons for NMHCs performed in North America

and Europe, where the complexity of the NMHC measure-

ments (numbers of compounds and sample gas mixtures) in-

creased during the experiments. While in earlier intercom-

parisons the use of certified NMHC calibration standards

was not common (Apel et al., 1994, 1999, 2003; De Saeger

and Tsani-Bazaca, 1993; Hahn, 1994; Pérez Ballesta et al.,

2001; Romero, 1995), multicomponent standards with cer-

tified NMHC mole fractions were circulated for analysis

among the participating laboratories in more recent inter-

comparisons (Plass-Duelmer et al., 2006; Rappenglueck et

al., 2006; Slemr et al., 2002). Within these studies the calibra-

tion with multicomponent NMHC calibration standards was

superior to calibration with a single hydrocarbon species.

Therefore, also in the ACTRIS intercomparison experiments

all participating laboratories were asked to use certified mul-

ticomponent NMHC calibration standards, traceable to the

GAW scale, for calibrating their instruments and for perform-

ing quality checks.

Eighteen stations or laboratories from nine European

countries took part in this ACTRIS intercomparison exercise

for the analysis of NMHCs. OVOCs were excluded due to

their instability in pressurised cylinders at ambient mole frac-

tions. Pressurised cylinders filled with NMHCs in nitrogen

(in the following called NMHC_N2) and NMHCs in whole

air (in the following called NMHC_air) were analysed by the

different laboratories using their own certified multicompo-

nent NMHC calibration standard. The participants performed

their measurements with GC-FID, GC-MS, or PTR-MS in-

strumentation. The performance of the different laboratories

was examined with respect to compliance with the DQOs of

ACTRIS and GAW (Table 2). Feedback was provided to the

participants during a workshop, via analysis of technical de-

tails of each instrument, and the provision of recommenda-

tions for further characterisations and improvements.

This paper presents the findings of the intercomparison,

with a focus on alkanes, alkenes, alkynes, and aromatic com-

pounds. Results are used to discuss the status of current

NMHC measurement capabilities in Europe 10–20 years af-

ter AMOHA, GAW, and NOMHICE intercomparisons and

to discuss and evaluate issues with different instrumental set-

ups used in the field.

2 Method section

2.1 Intercomparison approach

Eighteen European laboratories with 23 different GC instru-

ments participated in this NMHC intercomparison exercise

in 2012 (Fig. 1 with laboratory abbreviations, Tables S1–S2

in the Supplement). Additionally, two PTR-MS instruments

analysed the NMHC mixtures (Table S2; results are shown

only in the Supplement). It should be pointed out that the

“PerkinElmer Online Ozone Precursor Analyzer” is the only

commercially available all-in-one instrument tested in this

study. All other instruments use combinations of commer-

cially available parts and custom-built units.

The intercomparison exercise was performed in two loops

(with nine participants each) in order to keep the total time

for the exercise within a few months. All participants re-

ceived two cylinders, one filled with NMHC_N2 and one

with NMHC_air.

2.2 Preparation of NMHC mixtures

The two NMHC mixtures, NMHC_N2 and NMHC_air, were

prepared in 10 L “Quantum” passivated aluminium cylin-

ders (Air Products, purchased from National Physical Lab-

oratory (NPL)). NMHC_N2 was diluted with nitrogen (qual-

ity 5.0 from Linde AG, Germany) from a ∼ 100 nmol mol−1

uncertified mixture of 30 NHMCs (and several monoter-

Atmos. Meas. Tech., 8, 2715–2736, 2015 www.atmos-meas-tech.net/8/2715/2015/
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Figure 1. The participants of the ACTRIS NMHC intercomparison in Europe. Left: western, central, and southern Europe; right: north-

ern Europe. AUC: Auchencorth, CMN: Monte Cimone; DOU: Mines des Douai; FZJ: Forschungszentrum Jülich; HAR: Harwell; HPB:

Hohenpeissenberg; IPR: Ispra; JFJ: Jungfraujoch; KOS: Kosetice; MHD: Mace Head; NILU: Norwegian Institute for Air Research; PAL:

Pallas; PUY: Puy-de-Dôme; RIG: Rigi; SIR: Sirta; SMR: GC-MS, and SMR II: PTR-MS (both at SMEAR II, Hyytiälä); SMK: Schmücke;

WCC-VOC: Garmisch-Partenkirchen; YRK: York; ZSF: Zugspitze-Schneefernerhaus. For further details about the stations and instruments

see Table S1–S2.

penes) in nitrogen (prepared by NPL for HPB on demand)

into two cylinders by HPB. The resulting mole fractions in

NMHC_N2 were ∼ 1 nmol mol−1 (Table 1). The final pres-

sure in the cylinders was ∼ 120 bar. NMHC_air was filled

with ambient air from Dübendorf (a suburban area of Zurich,

Switzerland) in two 10 L cylinders, using a modified oil-

free diving compressor (Model SA-6; RIX Industries, USA)

on 31 October 2011. Due to the pressurisation, the water

vapour condensed and the final humidity in the cylinders was

very low (dew point <−30 ◦C, relative humidity∼ 1 %). The

mole fractions of C2–C8 NMHCs in NMHC_air ranged from

0.03 to 2.5 nmol mol−1 (Table 1). The final pressure in the

cylinders was ∼ 80 bar. Mole fractions in NMHC_air were

in the upper range of rural stations in Europe and higher than

remote conditions (Helmig, 1997; Helmig et al., 2008; Read

et al., 2009).

Three laboratories (WCC-VOC, HPB, and Empa) as-

signed NMHC mole fractions to the different cylinders be-

fore and after the intercomparison. Additionally, these two

time-separated measurements were used to assess the sta-

bility of the NMHC mixtures. All three laboratories used

certified NMHC calibration standards from the GAW Cen-

tral Calibration Laboratory for NMHCs (NPL), which de-

fines the scale for NMHC measurements in WMO GAW.

The analytical systems of the three reference laboratories

can be considered as sufficiently independent as different

pre-concentration systems and chromatographic columns are

used (see Table S2a–b).

Since HPB and Empa acted as reference laboratories, their

data measured in the middle of the intercomparison were

not used for the reference value determination. However for

completeness, their values are displayed in Figs. 2–4 and S1–

S4, and Tables S3–S6 together with those of the other par-

ticipants and correspondingly marked as no “independent”

results.

The NMHC mole fractions were usually assigned as error-

weighted means (Barlow, 1989; Bronštejn, 2007) and are dis-

played with their corresponding expanded uncertainty (cov-

erage factor k = 2, corresponding to 2σ or roughly a 95 %

confidence interval) in Table 1. A more detailed description

is given in the Supplement.

2.3 Measurement approach

A detailed measurement guideline was provided to the partic-

ipants to ensure consistent and comparable measurements of

the NMHC mixtures. All participants used the same provided

pressure regulators (model 206A from Scott Specialty Gases,

USA) and transfer lines (Silcosteel®, 1 / 16 in.,∼ 2.5 m). The

pressure regulator was mounted at least 24 h before the mea-

surement onto the gas cylinder and connected to the trans-

fer line. Afterwards, the regulator and the transfer line were

flushed three times and an initial leak test was performed

(observation of pressure drop during 10 min). The pressure

regulator and the transfer line were kept pressurised for at

least 24 h (with closed cylinder valve) for equilibration of

surfaces. Additionally, this setup served as a static leak test.

www.atmos-meas-tech.net/8/2715/2015/ Atmos. Meas. Tech., 8, 2715–2736, 2015
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All participants were asked to quantify the NMHC mole

fractions using their own calibration standard (Table S2b)

and to report their expanded measurement uncertainty (see

Supplement). Within GAW and ACTRIS, the scale for

NMHC measurements is defined by the Central Calibration

Laboratory (CCL) NPL, which continuously compares their

NMHC scale and the associated expanded combined uncer-

tainty of typically 2 % with other NMI (National Metrology

Institutes) (Grenfell et al., 2010). Though different scales

might cause a bias of results by participants that are related

to a non-NPL laboratory standard, this ACTRIS comparison

study addresses the inter-laboratory compatibility related to

the standardised GAW NMHC scale provided by NPL. The

certified expanded uncertainties of the NPL of 2 % are gener-

ally much lower than deviations discussed in this paper, e.g.

beyond the DQO of 5 %.

The composition and the mole fractions in the cylin-

ders were unknown to all participants, except for the refer-

ence laboratories HPB and Empa (see above). The measure-

ment procedure was the following: at least three calibration

standard measurements, five measurements of NMHC_N2,

five measurements of NMHC_air, at least three calibra-

tion standard measurements, and a zero-gas measurement

before and after the NMHC mixture measurements. Four-

teen analyses were by GC-FIDs and nine by GC-MSs (Ta-

ble S2). In this paper, results for 27 and 35 NMHCs are

shown for NMHC_N2 and NMHC_air, respectively. The

three trimethylbenzenes and the monoterpenes present in

NMHC_N2 were not investigated in this intercomparison pa-

per due to the lack of available data. The assigned NMHC

mole fractions (with expanded uncertainties) are given in Ta-

ble 1.

2.4 Data quality objectives (DQOs) for NMHC

measurements

In the WMO GAW Report No. 171 (WMO, 2007b) gen-

eral DQOs for different priority VOCs were defined (Ta-

ble 2). Within the framework of ACTRIS, the list of prior-

ity compounds (Table 1) was expanded, and more challeng-

ing DQOs (ACTRIS DQOs) were defined (Table 2). Overall,

ACTRIS DQOs are about a factor of 2 stricter than those in

the GAW Report 171. The reason for the introduction of the

ACTRIS DQOs was to detect trends of NMHCs more ac-

curately, which currently decline by 1–8 % per year in Eu-

rope (Solberg, 2012, 2013, and references therein). These

ACTRIS DQOs were also adopted by the GAW VOC Ex-

pert Group and the GAW Scientific Advisory Group for Re-

active Gases during their meetings in Daejong (South Ko-

rea, October 2014). For the uncertainty, which describes the

deviation from a reference value, the goals are set to 5 %

for alkanes, alkenes (including isoprene), alkynes, and aro-

matics (and to 10 % for monoterpenes). Values express the

expanded uncertainty with a coverage factor of k = 2. The

goals in repeatability, defined as the standard deviation of the

NMHC measurements, are 2 % for alkanes, alkenes (includ-

ing isoprene), alkynes, and aromatics, and 5 % for monoter-

penes. For mole fractions below 0.1 nmol mol−1 an absolute

value of 0.005 nmol mol−1 is accepted as uncertainty, and

0.01 nmol mol−1 for monoterpenes.

In the results section the measurement performance is

compared against these DQOs by ACTRIS and adopted by

GAW (Table 2). Hereby the uncertainties uref of the assigned

reference values (Table 1) need to be taken into account.

Thus, a result fulfils the ACTRIS DQO if the deviation from

the reference is less than the 5 % deviation class defined as

5% class =

√
DQO2

ACTRIS+ u
2
ref. (1)

For the 10 % deviation class (10 % class), the respective

former GAW DQO (Table 2) is applied.

2.5 C response for GC-FID systems

A GC-FID system can be characterised for losses or arte-

facts by making use of the known carbon response, the so-

called C response (Plass-Duelmer et al., 2002). When the C

responses for the various NMHC compounds are calculated,

they should agree within a few percent, except for ethyne

(Burns et al., 1983; Dietz, 1967; Faiola et al., 2012; Gong

and Demerjian, 1995; Scanlon and Willis, 1985; Sternberg

et al., 1962). The C response Ri for each compound i was

calculated as follows:

Ri =
Astd
i −A

b
i

mstd
i NiV

std
, (2)

where Astd
i and Ab

i are the peak areas of compound i in the

calibration standard (std) and the blank (b), respectively;mstd
i

denotes the certified mole fraction of the calibration standard;

Ni the number of C atoms in compound i; and V std the sam-

pled volume of the calibration standard.

When comparing the C response values in the calibration

standard and in NMHC_N2, the C responses should ideally

be identical. Deviation points towards either artefacts in the

analytical system (e.g. breakthrough during trapping, adsorp-

tive losses, peak overlap, changes on active sites) or in the

FID due to sample matrix effects influencing the flame. For

easier comparison, the C responses were normalised by the

average C response of the available C4–C6 alkanes (high-

lighted in yellow in Fig. 4). As some stations did not report

C2–C3 alkanes (e.g. HPB_B, FZJ_A) and additionally break-

through in C2 compounds could have occurred, only C4–C6

alkanes were taken into account. For two-column systems,

the average C response of the second column was determined

using C7–C8 alkanes, benzene, and toluene (highlighted in

green in Fig. 4). Any individual C response deviating more

than 10 % from the average C response was not considered

in the normalisation process.
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Figure 2. Mole fractions for NMHC_N2 and NMHC_air normalised to the assigned values. Circles (O) indicate separation column one,

triangles (1) separation column two. Open symbols indicate NMHC_N2, filled symbols NMHC_air. Black symbols indicate results for

mixing ratios > 0.1 nmol mol−1 (left axis, ratios to assigned values), blue symbols for < 0.1 nmol mol−1 (right axis, difference to assigned

values, see text). Error bars show the expanded combined uncertainties.
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Figure 2. Continued.

3 Results and discussion

3.1 Overview of results

Mole fractions for NMHC_N2 and NMHC_air normalised

to the assigned values (Table 1) are shown for each partic-

ipant and compound in Fig. 2 (black symbols, left y axis).

For compounds with mole fractions < 0.1 nmol mol−1 the

difference in nmol mol−1 to the assigned values is shown

(blue scale on the right y axis). Error bars represent the to-

tal expanded uncertainty as stated by the participant. Box-

and-whisker plots for all results are presented in Fig. 3. Re-

sults are in compliance with the ACTRIS DQO if they fall

into the 5 % class (Eq. 1). For compounds with mole frac-

tions below 0.1 nmol mol−1, this class reflects a deviation

of 5 nmol mol−1 plus uncertainty of reference. In addition,

for GC-FID systems C responses were calculated and are

depicted in Fig. 4. More detailed information on the per-

formance of different measurement systems is given in Ta-

bles S3–S6 as well as Figs. S1–S4 in the Supplement.
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Figure 2. Continued.
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Figure 2. Continued.
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Figure 3. Box plots for NMHC_N2 (left) and NMHC_air (right) relative to the assigned mole fractions (Table 1). (a) Overview box plot for

all results, (b) box plot for the different compound classes, (c) box plot for alkanes, (d) box plot for alkenes and alkynes, (e) box plot for

aromatics. The white box stretches from the 25th percentile to the 75th percentile, containing the median in between. The whiskers end at

the 10th and 90th percentile. The orange box indicates the 5 % class (see Table 2 and Eq. 1). MS: mass spectrometer; FID: flame ionisation

detector; PE: PerkinElmer.

For the ∼ 1 nmol mol−1 in nitrogen (NMHC_N2) nearly

62 % of all results were within the 5 % class (ACTRIS

DQOs), and nearly 90 % within the 10 % class (former GAW

DQOs; Table 2) (Fig. 3 and Tables S3–S4). The best perfor-

mance was achieved for alkanes with 65 % of the submitted

alkane data within 5 % of the reference; for the subgroup of

C2–C3 alkanes even 81 % of the submitted data were within

the 5 % class (Table S3, Fig. 3b). C4–C7 alkanes were more

challenging, and more deviations to the assigned mole frac-

tions were observed (Fig. 2). For alkenes and aromatic com-

pounds the percentages of results within the 5 % class were

58 and 47 %, respectively (Table S3, Fig. 3). Results for aro-

matics reveal a distinct tendency to be underestimated in

NMHC_N2 (Fig. 3e). Nevertheless, 63 % of the results match

the 5 % class (Table S3), reflecting the rather large uncertain-
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Figure 3. Continued.

ties of some reference values for aromatics (e.g. o-xylene,

Table 1).

For NMHC_air, generally more frequent and larger devi-

ations from the assigned values were observed compared to

NMHC_N2, and 50 % of all results were found within the

5 % class (79 % within the 10 % class) (Fig. 3, Tables S3 and

S4). Only C2–C3 alkanes reveal a rather good performance,

with 84 % of the respective data within the 5 % class. Com-

pared to NMHC_N2, the tendency to underestimate aromatic

compounds is not observed (Fig. 3e).

The repeatability of the instruments was evaluated as the

standard deviation (1σ) of the five measurements for both
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NMHC mixtures. The majority of the participants submitted

a relative repeatability in NMHC_N2 within the former GAW

DQO (± 5 % for alkanes and alkynes, ± 10 % for aromat-

ics and ± 15 % for alkenes including isoprene), 70 % even

within ± 2 % (ACTRIS DQO), independent of the detector

type. Poor repeatability was mostly linked with poor chro-

matographic resolution (see Tables S5 and S6).

In the following, reasons for deviations larger than the

stated quality objectives will be discussed.

3.2 Uncertainty estimations of the NMHC

measurements

Performing a complete uncertainty estimation is critical to

the quality of the data. Nevertheless, only the participants

DOU, KOS (both systems), RIG, HPB (both systems), JFJ,

MHD, NILU and ZSF provided a thorough analysis (see

“Determination of assigned values (error-weighted means)

for NMHC mixtures” in the Supplement) of their expanded

uncertainties (error bars in Fig. 2). All other participants cal-

culated their measurement uncertainties only partially (e.g.

only reporting repeatability). Generally, for many results the

uncertainties were underestimated and, even combined with

the uncertainties of the reference values, do not comprise the

deviation from the assigned values. Thirty-six percent of re-

sults in NMHC_N2 were out of the stated uncertainty ranges,

and 35 % in NMHC_air. As the expanded uncertainty corre-

sponds to the 95 % confidence interval, it would be expected

that not more than 5 % of the results deviate by more than

the uncertainty from the assigned values. This needs to be

improved in programmes like GAW and EMEP, as realistic

uncertainty estimation is essential for the user, e.g. in model

validation.

Critical in this evaluation are the assigned values; if these

are biased relative to the “true” values, deviations may occur.

However, in NMHC_N2 there was a check by a common di-

lution factor relative to a NPL-certified standard of identical

relative composition, which strongly supports the determined

mole fractions within better than 2 % and does not indicate

any bias. For NMHC_air, we rely on the uncertainty evalu-

ation of the reference values by the reference laboratories,

which is considered a realistic estimate. Though the assigned

values are generally higher than the majority of the partic-

ipants’ results (Fig. 3), they are typically between the me-

dian and the 75-percentile or 90-percentile values with par-

tially contradicting deviations for the various techniques; e.g.

alkanes derived from MS are high, whereas those from FID

are low compared to the reference (Fig. 3c). Furthermore,

deviations in participants’ results are similar for NMHC_N2

and NMHC_air (e.g. Fig. 3a, various results in Fig. 2), sup-

porting the assigned values in NMHC_air based on reliable

NMHC_N2 determination (see below).

3.3 Calibration procedure

One essential step on the way to high-quality NMHC data is

the use of an adequate calibration procedure. The participants

calibrated their NMHC measurements either directly against

certified multicomponent standards (one-step calibration) or

against whole air working standards, which in turn are related

to a certified multicomponent standard (two-step calibration

done by CMN and Medusa systems). The systems using a

NPL (the GAW Central Calibration Laboratory for NMHCs)

standard for direct, one-step calibrations (Table S2b) gen-

erally exhibited a good performance. Since the NMHC_N2

mixture and the NPL calibration standard virtually comprise

the same matrix, complexity, and manufacturer, observed de-

viations for sites referring to the NPL scale should be within

the repeatability of the instruments. This is not the case for

some participants and compounds, and it points to uniden-

tified sample transfer issues. The mole fraction range of the

used NPL standards (e.g. 2, 4, or 10 nmol mol−1) and date of

production apparently did not affect the quality of the results

(Fig. 2, Table S2b).

The systems FZJ_B, FZJ_A, MHD, and PUY used differ-

ent certified NMHC calibration standards (Table S2b). If a

systematic offset between different scales exists, it should

result in systematic deviations from the assigned values.

FZJ_B, FZJ_A, and MHD all used calibration standards from

Apel-Riemer, but the observed deviations from the assigned

values are random (e.g. deviations for alkanes are of different

extent and sign (Fig. 2m, p, and v). Obviously other instru-

mental issues (e.g. chromatographic resolution, non-linearity

of MS detector) affected these results and therefore system-

atic differences between the different calibration scales can-

not be assessed.

The Medusa instruments (JFJ, MHD, and NILU) generally

overestimated the NMHC mole fractions (Figs. 2u–w and

3b). However, the excellent repeatability suggests that the

systems run much better than the deviations indicate. Thus,

a significant issue might arise from the fact that Medusa in-

struments and CMN are calibrated with whole air working

standards using a two-step calibration. Direct calibration by

certified NMHC standards appears to be superior to whole

air working standards for NMHCs.

3.4 GC-FID systems

In order to analyse the performance of the GC-FID systems,

the normalised C response factors for the calibration stan-

dards and NMHC_N2 were compared (Fig. 4). Though iden-

tical C- responses are expected, several GC-FID systems tend

to slightly underestimate NMHCs in NMHC_N2 compared

to the calibration standard (Figs. 4 and 2). Even more sur-

prising was the fact that in some of the systems which have

two separation columns, a lower normalised C response for

NMHC_N2 compared to the calibration standard was ob-

served in only one column, e.g. AUC (in the PLOT column)
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Figure 4. FID C responses as an indicator of NMHC measuring system artefacts. Circles (O) indicate column one, triangles (1) column

two. Filled symbols indicate the C responses in the calibration standard, open symbols the C responses in NMHC_N2. The C responses for

column one were normalised by the average C response of the available C4–C6 alkanes (highlighted in yellow), column two by the average

C response of the available C7–C8 alkanes, benzene, and toluene (highlighted in green). If an individual C response deviated by more than

10 % from the average C response, the value was not considered in the normalisation process.

and DOU (in the CP Sil-5 CB column, Table S2b) (Fig. 4a,

h). The latter excluded sample transfer problems from the

cylinder to the GC but pointed towards systematically dif-

ferent carrier gas or detector sensitivity conditions between

analyses of calibration standard and NMHC_N2. Overall,

these discrepancies cannot be explained as general features

but must be related to individual technical issues of the re-

spective GC systems.

In general, there are several potential reasons for the devi-

ations of C response factors between the calibration standard

and the NMHC_N2 and from the expected value of 1. They

include losses of sample due to breakthrough, incomplete

desorption or losses on walls, poor chromatographic reso-

lution with inadequate peak separation or shape, and other

artefacts (e.g. water management) and are addressed below.

3.4.1 Problems with C2–C3 hydrocarbons

More than 80 % of the C2–C3 hydrocarbons were reported

within the 5 % class in NMHC_N2 (Tables S3–S4, Figs. 2

and 3b). However, a few systems reported C2–C3 hydrocar-

bon values even outside the range of ± 10 %. The systems of
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Figure 4. Continued.

AUC (only for ethene and propene), HAR, PAL, SMK, and

IPR showed losses of C2–C3 hydrocarbons in the normalised

C response plots, and ZSF and AUC (only for ethane) gave

enhanced values (Fig. 4a–f). All of these six mentioned sys-

tems used a PerkinElmer TurboMatrix, which contains an

air-toxics/air-monitoring trap, applies a 2 mL min−1 outlet

split between trap and column, and has a two-column con-

figuration with a Deans switch (Table S2). Sample break-

through could be a specific issue of the PerkinElmer trap for

these compounds. Badol et al. (2004) reported breakthrough

for ethene and ethyne when the sampling volume exceeded

900 mL. However, no systematic influence of sample volume

(up to 1360 mL) and trapping temperature (−40 or −30 ◦C)

could be identified (Table S2). For example IPR used−30 ◦C

as the adsorption temperature and a very large sample vol-

ume (1360 mL) but showed only moderate loss of C2 hydro-

carbons compared to e.g. SMK with 500 mL sample volume

and larger losses (Fig. 4). For ZSF, the C responses for the

C2–C3 hydrocarbons were even enhanced (> 1) compared to

all other hydrocarbons (Fig. 4e). This system was affected by

the displacement to 2650 m a.s.l shortly before this intercom-

parison exercise. Thus, most probably changed pressure and

flow rates caused deviations during thermal desorption and

might have affected the chromatographic resolution and thus

the measurement quality of several of the compounds inves-

tigated in this study. In Figs. 2e and 4e, distinct deviations are

observed for many substances, including C2–C3 compounds

(Fig. 4e). Another explanation for decreased C responses for

C2–C3 hydrocarbons could be a split issue during column in-

jection. If a pressure pulse builds up in the thermodesorption

phase, the split ratio might vary during the injection period

causing different split ratios for high- and low-volatility hy-

drocarbons. Further, this pressure pulse could potentially in-

fluence the Deans switch. However, the systems of DOU and

KOS_A also have Deans switches (with different thermod-

esorbers, Markes and Entech, respectively) and did not show

losses of C2–C3 hydrocarbons. Based on these results it is

not possible to distinguish between split, and trap issues and

this needs further investigation.
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Figure 4. Continued.

In NMHC_air the results of the low-boiling alkanes (up

to C5) were more scattered compared to NMHC_N2 (Figs. 2

and 3) mainly due to limits in chromatographic resolution

(see Sect. 3.4.5). Despite apparent losses in specific sys-

tems (C response < 1, Fig. 4), most systems did not show

deviations for the C2–C5 alkanes. However, the reference

laboratory WCC-VOC observed specific matrix problems in

NMHC_air in their GC-FID/FID system (not shown), which

they attributed to extraordinarily high OVOC levels causing

unusual artefacts in their trapping and desorption system.

The high OVOC mole fractions of ∼ 200 nmol mol−1 were

analysed by their PTR-MS system (see PTR-MS results in

Supplement).

Low-boiling alkenes (C2–C5) showed partly substantial

deviations to the assigned mole fractions in the AUC,

PAL, SMK, ZSF, and IPR results, especially in NMHC_air

(Figs. 3, 4a, c–f). Additionally to the aforementioned prob-

lems, alkene artefacts (see below) and, in the case of KOS_A,

poor chromatography resolution contributed. The rather low

mole fractions (< 100 ppt) did not affect the quality of the

results (Fig. 3b).

3.4.2 Ethyne

For ethyne large differences in the C response factors (values

between 0.3 and 1.4) were observed for the different stations

(Fig. 4). Furthermore, large variations (up to 0.4) between

the two C responses (calibration standard and NMHC_N2)

were evident. Based on the literature (Dietz, 1967; Scanlon

and Willis, 1985; Sternberg et al., 1962) the effective car-
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bon number is between 2 and 2.6, indicating a higher un-

certainty of the C response for this compound. Thus, in the

normalised C response figures ethyne is expected to be 1

or higher. This was actually observed for DOU, YRK, and

RIG. Deviations between the laboratory standard and the

ACTRIS NMHC_N2 were observed at ZSF, DOU, HPB_A,

and FZJ_B. Since at ZSF and FZJ_B observed deviations

were not particular to ethyne but a general phenomenon for

many compounds, both stations are not further considered in

this specific discussion. The normalised C response of ethyne

in the calibration standard of IPR was substantially lower

than that of other stations (Fig. 4f).

Together with ethene, ethyne is the most difficult com-

pound to be retained in air-toxics/air-monitoring traps (Badol

et al., 2004). As AUC, HAR, PAL, SMK, ZSF, IPR, and

KOS_A employ this type of traps, a breakthrough might be

possible. However as already discussed, no conclusive be-

haviour, e.g. higher losses for higher sample volume and

higher trapping temperature, was observed.

The instruments at DOU and HPB_A had in common that

both employ an Al2O3/KCl PLOT column. However, other

stations using the same type of column (YRK, RIG) did

not show this feature. We are currently speculating about

slightly different matrices between the calibration standard

and NMHC_N2 causing different interactions with active

sites of the specific PLOT column, resulting in more or fewer

losses.

Despite these losses observed in the C response factors,

the difference to the assigned mole fractions were minor for

six systems and moderate to substantial for 7 of 14 sys-

tems (larger than 10 % in either or both of the two NMHC

mixtures) (Fig. 2), with often substantially different devia-

tions for NMHC_N2 and NMHC_air indicating matrix ef-

fects. This shows that it is essential to have ethyne in the

calibration standard for direct calibration and that there is a

need for thorough testing of matrix effects; e.g. real ambi-

ent air samples with higher humidity might result in higher

breakthrough.

3.4.3 Alkene artefacts

Alkenes in NMHC_air exhibited largest differences to the

assigned values (Fig. 2), especially pronounced for all sys-

tems which used Nafion® Dryer water traps, including

PerkinElmer systems (Fig. 3d).

When using a Nafion® Dryer to remove humidity from

the sample, potential artefacts in C2–C4 alkenes may oc-

cur depending on the status of the Nafion® Dryer (Gong

and Demerjian, 1995; Plass-Duelmer et al., 2002, and ref-

erences therein). Butene peaks (for 1-butene, trans-2-butene,

and cis-butene) are frequently observed in zero-gas measure-

ments due to Nafion® Dryer artefacts, and these blank values

have to be subtracted in calibration or ambient air measure-

ments. Instruments using a Nafion® Dryer reported blank

values up to 0.35 nmol mol−1 for C2–C3 alkenes and up to

0.1 nmol mol−1 for C4 alkenes. Combined with the fact that

the mole fractions of C4–C5 alkenes were in the range of

0.02–0.12 nmol mol−1, it is expected that substantial differ-

ences to the assigned values occur due to blank issues. For

ethene and propene, however, such effects were comparably

small due to much larger mole fractions up to 2.5 nmol mol−1

and blank values up to 0.25 nmol mol−1. It should be noted

that the samples measured here were not humid and thus the

effects of water removal from the sample and the Nafion®

Dryer behaviour cannot fully be assessed. Most participants

were aware of the effects of a Nafion® Dryer and reported

larger uncertainties of their values (Fig. 2).

3.4.4 Losses of aromatic compounds and C6–C8

alkanes

The C responses for the C7–C8 alkanes and for the aromat-

ics were lower than 1 (Fig. 4), indicating losses in the an-

alytical system. Lower C responses were observed either in

both calibration standard and NMHC_N2 (Fig. 4; AUC, PAL,

SMK, IPR, YRK (except benzene), RIG, FZJ_B, and less ev-

ident in HPB_A) or only in NMHC_N2 (Fig. 4; HAR, DOU,

HPB_B, and FID). This effect was apparent in both intercom-

parison loops. This does not seem to be a general C response

issue for aromatics, because in many systems not all aromat-

ics showed a reduced C response (Fig. 4; KOS (both sys-

tems); for benzene: AUC, HAR, HPB (both systems), RIG,

YRK) and several other systems showed only a reduced C

response for NMHC_N2 (Fig. 4; HAR, DOU, and HPB_B,

FID). For these systems, systematic problems like insuffi-

cient desorption from the trap or adsorptive losses in the

GC system can thus be excluded. However, adsorptive losses

only in NMHC_N2 might have occurred due to insufficient

equilibration time and the flushing procedure of the respec-

tive pressure regulator and transfer lines. RIG reported lower

C responses compared to the calibration standard for C6–C8

alkanes and aromatics (Fig. 4k). This was related to insuffi-

cient desorption temperature due to ice on the outer side of

the Peltier-cooled trap which had built up during trapping.

In general, too-low desorption temperature from the trap

can be excluded for the glass bead traps (70–130 ◦C, Ta-

ble S2). For the air-toxics traps no losses of aromatics were

observed for HAR (trap at 320 ◦C) (Fig. 4a). By contrast,

losses prevailed at up to 380 ◦C (IPR), which were conse-

quently not due to too-low desorption temperature (Fig. 4f).

YRK results indicated losses which were not due to des-

orption temperature (Carbopack B and Carboxen 1000 at

350 ◦C) but were ascribed to adsorption on newly installed

stainless-steel transfer lines. In the slightly more humid

NMHC_air, YRK achieved relatively higher aromatic mole

fractions compared to the assigned values (Figs. 2–3), in-

dicating humidity passivation of active surface sites. Thus,

losses were only apparent in their dry calibration standards

(Fig. 4g). Compatible with this observation is the fact that

the box plots (Fig. 3b and e) show a systematic underestima-
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tion of aromatics only for NMHC_N2, while for NMHC_air

the results are more equally distributed.

Different hypotheses to explain losses of aromatics and

C6–C8 alkanes did not result in simple and conclusive expla-

nations. Losses were observed in individual systems when

desorption was not sufficient, when adsorptive losses on in-

appropriate surfaces like newly installed stainless-steel lines

(heated or not) occurred, or when dry sample gases were

analysed. As long as a decrease in the C response is evident

in both the calibration and NMHC_N2, the submitted mole

fractions did not differ much from the assigned values (e.g.

YRK and AUC) (Figs. 4a, g, 2a, and i).

3.4.5 Chromatographic resolution

Poor peak separation or peak shape (tailing) influences the

peak integration and the results. Both effects can mask other

problems if the sample matrix is rather complex, such as in

NMHC_air, where peak overlap is likely to occur in FID sys-

tems. Due to substantially different mole fractions in ambient

air compared to NMHC_N2, the chromatographic resolution,

e.g. peak overlap, for NMHC_air differed considerably from

the characteristics seen in NMHC_N2.

Insufficient C4–C6 peak separation often resulted in mole

fractions outside the 10 % class in NMHC_air, especially for

2-, 3-methylpentane; 2,2-,2,3-dimethylbutane; and 2-methyl-

2-butene (Figs. 2 and 3b). Similar results were already re-

ported in the AMOHA intercomparsion, where some par-

ticipants had problems in separating 1-butene from 1,3-

butadiene, cis-2-butene from 2-methylbutane, and isoprene

from the methyl pentanes (Plass-Duelmer et al., 2006;

Slemr et al., 2002). The reasons for the insufficient chro-

matographic separation include column degradation (AUC,

FZJ_B), inadequate oven temperature programme (KOS), or

non-baseline separation (HPB_A for C5–C6 alkanes) (for

chromatograms see Supplement).

3.5 MS systems

Compared to FID systems, MS systems allow a better com-

pound identification and peak separation at the cost of de-

tector stability. With few exceptions, HPB_B (MS) reported

the NMHCs within the 5 % class (Fig. 2q). It should be kept

in mind that for HPB this was not a blind intercomparison.

However, the ACTRIS mixtures were treated like unknown

samples. Further, HPB_B was not used for the determina-

tion of the assigned values. The instrument is operated with

a FID running in parallel to the MS detector. While the FID

revealed stable behaviour of the instrument, in the MS signal

drifts were observed by HPB. Thus, in routine measurements

the MS is tuned weekly and every air sample is accompa-

nied by a calibration measurement. In fact the HPB_B (MS)

system was the best-performing MS system in this intercom-

parison, indicating that NMHC measurements within the 5 %

class (ACTRIS DQOs) are achievable by MS systems.

The relatively large deviations from the assigned reference

values in NMHC_N2 and NMHC_air observed for CMN and

the Medusa systems (Fig. 3) were mainly due to calibra-

tion issues (two-step calibration; see Sect. 3.3). Nevertheless,

the very good repeatability of the Medusa systems indicates

the potential to perform high-quality NMHC measurements

within the 5 % class (Fig. 2u–w).

FZJ_A was optimised to perform fast chromatography as

the instrument is employed in aircraft measurements. The

sample volume is kept small in order to reduce the sampling

time. With a chromatography time of 3 min, the peak res-

olution can hardly be compared to the other GC systems.

Nevertheless, FZJ_A performed fairly well for normal alka-

nes and aromatics, whereas branched alkanes and alkenes

showed larger deviations from the assigned values (Fig. 2p).

Whether this was due to the rather complex 74-component

calibration standard in the 0.1 to 10 nmol mol−1-range (Apel-

Riemer Environmental Inc.) cannot be judged from the avail-

able data. Furthermore, breakthrough of C4 compounds was

reported by FZJ_A. In general, the blank chromatogram re-

vealed many peaks (chromatogram not shown), which possi-

bly affected the results, especially in NMHC_air.

For NMHC_N2 the MS systems of PUY and SIR reported

most values with a deviation less than 10 %, whereas for

NMHC_ air more of the reported values were outside the

10 % class (Fig. 2r and s). For PUY this was probably due

to drifting calibration standard measurements (up to 20 %)

and poor repeatability; for SIR it was probably connected

to high blanks (relatively high blank values compared to as-

signed values (Table S7)) and poor stability of the calibration

measurements.

The MS at SMR clearly underestimated the NMHC mole

fractions in NMHC_N2 (Fig. 2t), except for isoprene. In con-

trast, SMR reported all values within the 10 % class (Ta-

ble S3) for NMHC_air. SMR reported a non-linear calibra-

tion curve and low reproducibility of the submitted calibra-

tion measurements, whereas the two NMHC mixtures were

reproducibly measured.

In summary, the calibration, drift, and non-linearity are

important issues for MS systems, which have to be handled

with most care when using a GC-MS system for the measure-

ments of NMHCs.

3.6 Other issues

During the ACTRIS intercomparison only very dry NMHC

mixtures were analysed, and therefore a full performance

assessment of water management systems (Nafion® Dry-

ers, cold traps, or hydrophobic adsorbents at room temper-

ature) cannot be made. Nevertheless, some basic conclu-

sions can be drawn. The cold-trap systems used by YRK

and HPB_A (Table S2a) exhibited no artefacts. Such systems

sometimes have a large internal volume for water removal,

and, whilst very suitable for online measurements, they are

not so well suited for conditions where limited flushing vol-
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ume is an issue, e.g. when analysing limited sample vol-

umes. In this intercomparison, where dry samples were anal-

ysed, this method was superior compared to Nafion® Dryers

where alkene artefacts are observed (see Sect. 3.4.3). The use

of hydrophobic adsorbents at room temperature indicated no

problems for HPB_B. However, the weak adsorbents used in

HPB_B are not appropriate for the adsorption of low-boiling

NMHCs (C2–C3).

Ozone management was not in the scope of this ACTRIS

intercomparison study, and, furthermore, ozone is rapidly de-

stroyed on metal surfaces; thus no ozone was present in the

cylinders.

One specific issue was associated with the ZSF sys-

tem, which had been brought to 2650 m a.s.l. shortly be-

fore this intercomparison. The reduced atmospheric pressure

might have caused changes in the chromatographic condi-

tions which had not been adjusted at the time of the mea-

surements.

3.7 PTR-MS results

The two NMHC mixtures were analysed with the PTR-

MS systems of SMR II and WCC-VOC. Isoprene in

NMHC_N2 fitted well inside the 5 % class, whereas isoprene

in NMHC_air, toluene, and benzene in both NMHC mixtures

were reported outside the 10 % class. Detailed results and

some explanations are given in the Supplement.

3.8 Comparison with previous intercomparisons

During AMOHA phase 4 (Plass-Duelmer et al., 2006) and

NOMHICE phase 4 (Apel et al., 2003) measurements of

whole air and synthetic test samples were compared. As out-

lined in the Introduction, conditions were different and, ac-

cordingly, these studies cannot be compared with the AC-

TRIS intercomparison in the strictest sense. However, the

whole air test samples supplied by canisters (NOMHICE and

AMOHA phase 4 part 1) or sampled into individual canisters

by participants (AMOHA phase 4 part 2) had a similar com-

plexity to the whole air sample used in the actual intercom-

parison (e.g. 20–50 % of NMHCs < 0.1 nmol mol−1). Origi-

nally introduced by Apel et al. (2003) and modified by Plass-

Duelmer et al. (2006), a ranking procedure defining a score

for quality and quantity of the provided results by each lab

was introduced:

Rank=

((n <+10%)+ 0.75(+10%< n <+25%)+ 0.5(+25%< n < 50%))

N

+0.3

(
N

X

)
− 0.3(k),

where n is the number of reported values falling into the

given reference intervals, N is the total number of com-

pounds reported, X is the total number of compared com-

pounds, and k =

∑
[

x
ref−1
]

N
the averaged deviation of the re-

ported values x from the reference values “ref”. For reference

values below 0.05 nmol mol−1 the bracket term is taken as

k =

∑ x−ref
50pmol/mol

N
(for details, see Plass-Duelmer et al., 2010).

This “Rank” score can reach a maximum of 1.3 (all com-

pounds measured and correct within 10 %) down to negative

numbers for substantial deviations from the reference (large

k). Minimum, median, and maximum ranks, respectively, for

NOMHICE part 4 are 0.23, 0.81, and 1.16 (37 compounds);

for AMOHA 4 phase 1 are 0.82, 1.02, and 1.14 and for phase

2 −0.31, 1.0, and 1.12; and in this study for NMHC_air are

0.49, 1.03, and 1.19 (the latter excludes results by the ref-

erence laboratories). The best-performing laboratories were

in all studies similar at 1.14–1.19, the mid-quality increased

from NOMHICE to AMOHA and this study, and the lowest-

performing labs were best in AMOHA 4 phase 1 and AC-

TRIS. If we interpret the results as development over time,

there is a tendency of improvement of the lower-performing

labs, whereas the medium to best laboratories perform essen-

tially unchanged over the last 15 years. However, AMOHA

was a “learning” intercomparison with phases of increas-

ing complexity and feedback to the participants in between,

which in the end yielded the best performance for AMOHA

4 phase 1. Compared to this, ACTRIS may be seen as a snap-

shot with reasonable performance, as well as highlighting the

need of more regular feed-back to the stations.

4 Conclusions

In the NMHC intercomparison exercise performed in the Eu-

ropean infrastructure project ACTRIS, a significant number

of instruments were capable of measuring NMHC in nitro-

gen (NMHC_N2) fairly accurately: 88 % of the submitted

NMHC values were within 10 %, and 58 % even within 5 %,

of the reference values, which are the DQOs of ACTRIS with

respect to the deviation to assigned values. It should be noted

that NMHC_N2 was almost identical to the NPL calibration

standards used at the stations and a substantial number of

deviations was not expected. Participants generally achieved

very good repeatability in their measurements in line with the

objectives of 2 %.

In compressed whole air (NMHC_air) generally more fre-

quent and larger deviations to the assigned values compared

to NMHC_ N2 were observed (77 % of the reported values

were within 10 %, but only 48 % were within 5 %). It should

be noted that this comparison uses test gases which do only

partly reflect the complexity of ambient air, e.g. no ozone

and low water content. On the one hand, an important con-

tributor to insufficient results in NMHC_air was blank issues

observed in zero-gas measurements in some of the systems,

especially those using a Nafion® Dryer. On the other hand,

systems with cold traps exhibited smaller blank issues. The

study highlights the importance of good zero-gas measure-

ments to determine realistic blank values to be subtracted

from measurement results.

www.atmos-meas-tech.net/8/2715/2015/ Atmos. Meas. Tech., 8, 2715–2736, 2015



2734 C. C. Hoerger et al.: ACTRIS non-methane hydrocarbon intercomparison experiment in Europe

Another factor contributing to the poorer NMHC_air re-

sults is the reduced chromatographic resolution, particularly

in the range of C4–C6 compounds. Generally, those systems

using direct calibrations in the nanomole-per-mole range

achieved better results than those using whole air calibration

standards. This confirms and emphasises the results found in

the AMOHA and GAW intercomparisons (Plass-Duelmer et

al., 2006; Rappenglueck et al., 2006; Slemr et al., 2002) as

the two-step calibration and more complex matrix in whole

air calibration standards introduce additional potential errors.

For ethyne, losses may occur due to breakthrough in the ad-

sorption trap, and yet unexplained reduced C response was

observed in several systems. This intercomparison supports

previous studies, finding that it is essential to calibrate ethyne

directly and carefully characterise the response of the sys-

tem in dry calibration standard and humid ambient air sam-

ple matrices. The use of FID C responses proved to be a

powerful tool because it helped to identify problems in a

number of analytical systems. However, as long as a sys-

tem behaves similarly in different sample gas matrices, de-

viations in the C response may cancel, resulting in correct

mole fractions. But this requires thorough testing of the re-

spective GC systems. Breakthrough is generally an issue for

C2–C3 hydrocarbons in adsorptive traps. Deviations from

the expected C responses for low-boiling hydrocarbons were

mainly observed in systems using the PerkinElmer Thermod-

esorber with air-toxics/air-monitoring traps. Whether these

deviations were due to breakthrough or split injection issues

could not be resolved. Almost all of the participating instru-

ments indicated losses of C7–C8 aromatic compounds, most

probably due to adsorptive losses. Despite such losses, many

participants achieved good results for aromatics, but over-

all deviations were slightly larger than for other compound

groups. On average, FID systems achieved better results, but

good measurements were also obtained with GC-MS sys-

tems; however, since the MS is less stable than FID, more

frequent calibrations are required.

Another important result of this intercomparison is that in

more than 25 % of the reported results uncertainties were

substantially underestimated and major uncertainty contri-

butions were not correctly assessed. Last but not least, erro-

neous results were also caused by the occasionally inattentive

data submission, with mistakes and incomplete information.

While these problems were detected and resolved in the rel-

atively small data set of this intercomparison, it is an issue

with submission of insufficiently controlled data sets to pub-

lic data centres and end-users.

The PerkinElmer Online Ozone Precursor Analyzer is the

only commercially available instrument used by five par-

ticipants in this intercomparison. Although these were not

among the best performing in this study, reasonable results

can be achieved. We demonstrated that the ACTRIS DQOs,

albeit demanding, can be achieved with state-of-the art mea-

surement systems. However, equally important for achieving

high-quality results are experienced operators, comprehen-

sive quality assurance and quality control, well-characterised

systems, and sufficient manpower to operate the systems and

evaluate the data.

The Supplement related to this article is available online

at doi:10.5194/amt-8-2715-2015-supplement.
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