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Abstract: The way Norway is spearheading electrification in the transport sector is of global interest.
In this study, we used the Norwegian Emissions from Road Vehicle Exhaust (NERVE) model, a
bottom-up high-resolution traffic emission model, to calculate all emissions in Norway (2009–2020)
and evaluate potential co-benefit and trade-offs of policies to target climate change mitigation, air
quality and socioeconomic factors. Results for municipal data with regard to traffic growth, road
network influences, vehicle composition, emissions and energy consumption are presented. Light
vehicle CO2 emissions per kilometer have been reduced by 22% since 2009, mainly driven by an
increasing bio-fuel mixing and battery electric vehicles (BEV) share. BEVs are mostly located in and
around the main cities, areas with young vehicle fleets, and strong local incentives. Beneficiaries
of BEVs incentives have been a subset of the population with strong economic indicators. The
incentivized growth in the share of diesel-fuelled passenger vehicles has been turned, and together
with Euro6 emission standards, light vehicle NOx emissions have been halved since peaking in 2014.
BEVs represent an investment in emission reductions in years to come, and current sales set Norway
up for an accelerated decline in all exhaust emissions despite the continual growth in traffic.

Keywords: bottom-up emission modeling; CO2; NOx; on-road traffic; electrification; BEV; EV;
bio-fuel; climate policy

1. Introduction

With increasing urgency, the need to abate climate gas emissions is finding its way into
policy, with increasingly ambitious emission reduction targets to pursue [1]. The transport
of passengers and goods on roads is one of the largest contributors to both air pollutants
and greenhouse gases (GHG)’s emissions. In Europe, road transport contributes to 26%
of total emissions. While total CO2 emissions have decreased by 23% since 1990, CO2
emissions from road transport have increased by 24% over the same period [2]. In 2019,
light-duty vehicles accounted for more than half of these emissions [3]. This growth is due
to increasing transport demand and the growing number of motorized vehicles with high
fuel consumption, such as sport utility vehicles (SUVs) [4]. Globally, the ever-increasing
need for road transport, especially in developing countries, entails an increase in emissions
there in the years to come [5].

Exposure to air pollution is widely recognized as a significant health risk, is globally
responsible for millions of deaths each year, and has long had regulations. In Europe, the
increase in emissions of regulated pollutants (NOx, CO, PM, particle number concentration,
and non-methane hydrocarbons) from road traffic have been less pronounced than for CO2
due to the technological improvements. Increasingly stringent emission standards have
been placed on road vehicles as a result of the latest Euro 6/VI, and the new proposal for
Euro 7/VII is being discussed. Therefore, despite traffic growth, several areas in Europe
now see a reversal of trends [6], with air pollutant traffic emissions and concentrations
going down due to technological improvements and fleet renewals [7]. Though climate and
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air pollutant reductions often are linked, for road traffic, past measures to reduce emissions
have had few co-benefits [8]. In addition, the focus on emission mitigation from vehicles
has led producers to aim for low-emission vehicles. While this has certainly reduced
emissions, it has also led to a high degree of test optimization (and software cheating [9]),
resulting in large discrepancies between manufacturer-given emissions and real-world
observed emissions [10]. This growing difference is up to 70% for petrol-electric hybrid
cars and, on average, ∼20% for a 2016 model car [11]. This leads to uncertainties in what
emission reductions are actually achieved for fossil-fuelled vehicles and poses a challenge
for emission calculations and evaluation of policy effectiveness.

After a slow reemergence from nearly 100 dormant years, sales of battery electric
vehicles (BEV) are now rapidly taking a larger share of the global new car sales market.
Indications are that 2022 could be the peak year of world internal combustion engine (ICE)
road passenger transport [12]. This was recently accelerated by the new mandate by the
European Union on a ban on sales of ICE cars and vans after 2035, which was signed in
June 2022. BEVs emerged first as small short-range vehicles and, thereafter, have diversified
into a wide range of vehicles available in the market. For the past decade, Norway has
spearheaded this transition with the world’s highest BEV car park fraction. This has been
achieved behind strong financial incentives [13,14] to promote both buying and using BEVs.
It started in 1990, when trial periods for temporary exemption from registration tax took
place. Currently, there are incentives at the national level, such as the exemption from
25% VAT on new vehicles, and others that may differ among municipalities such as the
permanent use of transit lanes, reduction in company car taxes, exemption from paying
car ferries fees, and exemptions or discounts for parking and toll systems [14]. Moreover,
in 2007, a fiscal policy was introduced to benefit diesel cars through a registration tax
differentiated Certificate of Conformity CO2 emissions [15]. As a consequence of such
policies, Norway appeared on track to complete its stated aim of a full transition to 100%
BEV sales by 2025. Similar aims are currently pursued globally by other countries and
carmakers alike (e.g., [16,17]).

The current fuel transition in Norway has not come about by itself, but rather through
enabling technologies and policy intervention [17]. The costs from loss of revenues from
mitigation strategies to abate emissions remain a concern, and the numerous objections
to BEV, mainly related to the production of the vehicle, battery and electricity [18], also
add uncertainty to how beneficial such a fuel transition is for reducing total CO2 emissions.
However, effective measures to reduce road transport emissions remain an essential task
in reducing air pollution and achieving GHG reduction targets [19,20]. Norway has had a
multi-pronged approach to reducing its on-road emissions through fuel efficiency, traffic
reduction, bio-fuels and electrification [21]. Each of these policies has trade-offs and
co-benefits that should be evaluated. However, there exists little documentation on the
details of the implications of the different strategies pursued by Norwegian policymakers.
Furthermore, local effects and potential trade-offs and co-benefits between both air quality
and socioeconomic implications are poorly documented. In order to achieve this, proper
methods need to be used, which, in addition, allow for integrated approaches to tackle
both climate change and air pollution [22–24].

There exist a wide range of methods to estimate emissions, largely dependent on
their purpose. Our use of detailed bottom-up emissions offer great opportunities. It
allows identifying which measures have a stronger impact and establishing links between
emissions and specific policies implemented at the local level or even to socioeconomic
factors. Similar bottom-up methods have been used worldwide to investigate both air
pollutants and GHGs from road traffic on a local scale (e.g., [25–28]). However, there
are uncertainties in large-scale bottom-up inventories, as they are sensitive to the initial
assumptions of emission factors and activity data. On the other hand, while offering little
detail, national-scale inventories based on fuel sales provide a robust estimate to compare
national numbers. Reports of national emissions are used for regulatory purposes as part
of international agreements (e.g., the Paris Agreement on climate change) or directives
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(e.g., National Emission reduction Commitments, NEC-Directive). Sector-specific national
emissions of both GHGs and air pollutants are reported separately to the United Nations
Framework Convention on Climate Change (UNFCCC) and the Convention on Long-Range
Transboundary Air Pollution (CLRTAP), respectively. Member states select input data and
methods for each sector following existing guidelines and recommendations (e.g., [29,30]).

Beyond national scale resolution, emission maps are produced by several independent
groups such as CAMS [31] and EDGAR [32]. Typically reliant on down-scaling by proxy
national emissions, these give little insight into processes and thus are not able to answer
questions on local policy interventions that include local scenarios and conditions. The
estimation of emissions based on bottom-up approaches, as applied in this study, relies
on combining activity data at high spatial resolution with emission factors in a way that
represents the emission processes and has the advantage of keeping the resolution of the
activity data [33]. Air quality has always been a local concern, and thus, high-resolution
emissions have always been a requirement. Thus far, there has been limited demand for
high-resolution CO2 emission inventories, but recently, local authorities have started to
set targets for their CO2 emissions, and they need more details on their emissions [34].
Moreover, highly detailed information is needed to predict GHGs emissions and develop
efficient mitigation policies, where the lack of detailed GHG data represents an important
limitation of such studies [35].

The aim of our study is two-fold, (i) evaluate the changes in traffic emissions in
relation to different policy measures implemented over time based on highly detailed
data, and (ii) assess the results in relation to the main influencing factors and geographical
distribution. In addition, the highly detailed traffic volumes, down to the smallest road
links made available through this study, are the first of their kind to cover Norway. We
present novel, highly detailed data and emissions from the Norwegian Emissions from
Road Vehicle Exhaust (NERVE) bottom-up traffic emission model and show decomposed
reasons for and geographical differences in on-road emission changes. We first present the
NERVE bottom-up traffic emission model and the analysis of the used input data (Section 2).
Thereafter, the results are included and discussed (Section 3) in relation to the most relevant
factors affecting air pollutants and CO2 emissions from on-road transport and their trends
and spatial heterogeneity in relation to policy interventions and transport electrification.
Section 4 summarises the main conclusions from the study.

2. Model and Input Data

The NERVE model was originally designed to calculate climate gas emissions from
road transport in Norwegian municipalities [36]. It is an open source model distributed
under a general public license (GNU). More recent additions to the model include diversifi-
cation to calculate air quality components, hourly output on road links, and an update of
the Handbook Emission Factors for Road Transport (HBEFA) version 4.1 emission factors,
which are presented here. NERVE is based on highly detailed input data on roads, vehicles
and emission factors for Norway. The type of input data is, for the most part, readily avail-
able in other countries. Thus, the NERVE model has also been adapted to estimate traffic
emissions for Abu Dhabi Emirates [37], urban areas abroad such as Dublin, Ireland [38],
and currently also in Warsaw, Poland. It has also been used to investigate the effects of
environmental speed limits on emissions [39], to relate tire wear particles and CO2 emis-
sions [40] for global applications, and in numerous local air quality assessments [41–43].
This study is based on the Norwegian input data, which are described in Figure 1 and in
the following sections.
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Figure 1. Schematic description of the input data that goes into the NERVE model, their sources and
level of detail.

2.1. Emission Factors

The emission factors (EF) used in the NERVE model are from HBEFA, which is a com-
prehensive EF database for different types of vehicles under different driving conditions.
NERVE uses HBEFA version 4.1 [44]. EFs in HBEFA are produced for all relevant engine-
related emissions based on collaboration with mainly north European states. Warm engine
emissions are based on emission measurements under real-world driving cycles from the
Passenger Car and Heavy Duty Emission Model (PHEM) model [45]. Cold emissions are in
HBEFA available per start and added to warm engine emissions (see Section 3.1). Extracting
HBEFA emission factors requires purchasing licensed software.

The emission factors in HBEFA version 4.1 covers all vehicle categories; passenger
cars (PC), Light Commercial Vehicles (LCV), buses and Heavy Duty Vehicles (HDV). Each
vehicle category consists of several vehicle segments, which classify vehicles based on
their most relevant properties affecting emissions, i.e., weight, emission standard (Euro
Class) and engine fuel(s) [44]. In our study, about 780 vehicle segments are considered.
Emissions from each vehicle segment vary with driving conditions; thus, our HBEFA
extraction consists of around 1440 EFs for each vehicle segment, which represent different
driving conditions defined by signed speeds, inclination, congestion levels and road types
(including separation between urban and rural roads).

Figure 2 shows the CO2 emission per kilometer of a Euro6 diesel PC for each of the
driving conditions (free flow, heavy, saturated, stop and go, and stop and go2) under
varying speeds and slopes. CO2 EFs of the vehicle in Figure 2 vary from about 80 to
450 g km−1. The highest emission factors are obtained for heavy congestion (St+Go2), where
the driving cycle involves extensive acceleration and braking, which increase emissions
from a baseline of about 80 g km−1 to above 300 g km−1 for all other variables. Road
gradient, here given as a two-way slope (i.e., a kilometer with a slope of 2% first driven up,
then down), is the second most influencing factor, along with signed speed and road type,
which also have a significant influence on emissions. At the level of detail to which NERVE
is built, it is crucial to have a well-defined road network so that the actual traffic conditions
of the vehicles are well matched and accounted for. This level of detail is also necessary to
capture geographical differences in emissions.
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Figure 2. Example of CO2 EFs for a diesel-fuelled passenger vehicle with Euro 6 emissions standards.
The colors of the dots refer to different congestion levels. We identified 12 HBEFA road types ranging
from access to motorways, which are separated by the size of each dot.

2.2. Road Properties and Traffic Conditions

While the Norwegian road network is available from a number of sources, the traffic
on them is less available. Further details required for precise emission calculations such
as declination and congestion are, to our knowledge, not available from any other source.
Figure 3 shows the road network in Norway split into European roads, regional roads, and
urban roads. The four biggest urban areas are also shown in a higher level of detail, where
we have highlighted different road features that influence emissions. The road network
data rely, for the most part, on the Norwegian road authorities database (NVDB), which
contains virtually all significant roads in Norway. In NVDB, each road link is defined as a
geolocated object with certain attributes and an ID tag. The relevant attributes for modeling
traffic emissions are the curvature, inclination, speed limit, the type of road and number
of lanes.

The traffic on the NVDB roads is built up of five regional traffic modeling results
obtained with the Norwegian Regional Transport Model (RTM). The RTM model is a four-
step transport model, as described in [46]. It is widely used by authorities, industry, and
research (e.g., [47,48]). While the model for each region is unique, they are built on the
same code and give similar results where they overlap. An extensive validation against
traffic counting was performed and some local corrections were applied [36]. The resulting
annual average daily traffic (ADT) is in Figure 3 represented by the width of each road.
Transportation of goods and route buses are input independently [49].
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Figure 3. Road network in Norway split into types of roads, including European, regional, and urban
roads. The magnification of the cities indicates the road network where the width of each road link
reflects the annual daily traffic (ADT), whereas the color indicates different variables that affect traffic
emissions, e.g., the Bergen network is colored based on the slope, Trondheim on the speed limit,
Stavanger according to the congestion level and Oslo based on the road type.
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A disadvantage of RTM is that it does not produce ADT for all the smallest roads.
A portion of the traffic in each of the 14,000 small area districts across Norway are in
RTM described on artificial connector roads. These connectors are straight roads from the
geometric center to the nearest intersection. Thus, the driving distances on these roads are
not properly represented, and there are no good alternative sources of data for traffic on
these roads. In this set of traffic data, we have placed the traffic of the artificial roads back
on the road network, giving each of the empty roads in the network the connector links
ADT. The traffic on the smallest roads represents about 5% of the total ADT and 18% of the
total driving distance for light vehicles (PC and LDV) when laid out on the road network
by this method.

In each of the subplots of Figure 3, the thickness of the line of each road is proportional
to the ADT. Each trafficked road segment from RTM is matched to a HBEFA corresponding
road type based on speed, city (all Norway map) and type (details also in [36]). Road
properties are important input as, for most vehicles, emissions can vary by a factor of
four or more between different driving conditions. In Oslo, the roads are colored by main
type (Figure 3), where the European and regional roads have about 20% of the total traffic
whilst making up less than 1% of the total road network. The main roads in Bergen are
relatively flat (Figure 3), and so while the road network and terrain have mostly steep
slopes, a significant portion of the traffic is on flat roads. Inside Trondheim, the signed
speed is highlighted by color, whereas in most cases, the largest roads have a high speed
limit. The congestion in Stavanger is perhaps the most relevant feature for determining the
HBEFA emission factor for these roads. Congestion varies, and even densely congested
roads will also have a portion of uncongested traffic. For congestion, the travel time in
the morning (7:00–9:00) and evening rush (15:00–17:00) is in NERVE compared to that on
an uncongested travel time and presented as % delay. Based on a sample of roads with
congestion, counting indicates that about 40% of the traffic is during rush hour. Based
on the % congestion, NERVE places a fraction up to 40% in ‘stop+go’ situations. Only a
limited amount of roads have rush hour congestion from RTM, mainly in and around the
four largest cities. As a result, slightly less than 1% of vehicle kilometers driven in Norway
are in a state of congestion.

2.3. Fleet Composition and Mileage

NERVE relies on the Norwegian vehicle registry to determine which vehicle tech-
nologies are present on each road. The vehicle registry is annually produced by Statistics
Norway and contains the registered address of each vehicle along with the bi-annual peri-
odic control readings of odometer driving distance. The driving distances in the interim
years are filled in the model by a simplistic assumption, and for new vehicles, the model
bases itself on the driving distances of newly bought vehicles in previous years. A fleet
composition dataset at the municipal level and per year was purchased from Statistics Nor-
way, which follows the HBEFA as closely as possible in terms of type, vehicle weight, Euro
emission standard, and engine fuel(s). This provides an annual driving-distance-weighted
fleet composition on the vehicle detail level for each municipality in Norway, which, in
addition, closely resembles that of HBEFA. For all hybrid electric vehicles, a constant 20%
of the driving is assumed as electric.

Figure 4 shows the Norwegian vehicle Euro emission standard mix from 2009 to 2020
in terms of the fraction of kilometers driven for each of the Euro categories. The Euro
6/VI standard (white in Figure 4) introduced in 2014 is quickly taking over. This process
is fastest for heavy vehicles. Buses and HDV have the shortest average age of 4.5 and 4.6
years, respectively. Over the 13-year period, this represents nearly a halving of the average
age of buses, and in just 6 years after being introduced, approximately 70% of vehicles are
Euro VI in 2020.
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Figure 4. (Top): The fraction of the total distance driven by each vehicle class with different emission
standards (Euro class 0–6) in separate years. The edge of each bar is colored by the vehicle class.
Colors correspond to the bottom plot. (Bottom): Each line is the average of each vehicle class over
time, and the border colors of the bars in the upper panel correspond to the vehicle class.

On the other hand, Norway has a slightly aged PC and LCV vehicle fleet, with an
average age of 8.3 and 7.2 years in 2021 and 2022, respectively (Figure 4). However, this
number is, as for the buses and HDV, weighted by the driving distance. The average
age is about 2.5 years older based on the number of registered vehicles (dotted lines in
Figure 4). This shows that newer vehicles of this type are driven significantly more than
older vehicles.

NERVE assumes that vehicles operate out of their registered municipality. Thus, to
account for the mobility across municipalities and obtain a vehicle mix on each road, an
RTM simulation was performed to separate out the trips by their origin and the driving
distance in each municipality. Accordingly, it was possible to use a mix of vehicles from the
municipalities where the trip originated. Then, for each municipality, the traffic volume on
the roads is comprised of a weighted part of several municipalities. In the case of leased or
company vehicles, this may not be the case, but in both instances, there is limited data to
correct this assumption for, and as a general rule, these data will be sufficient to describe
the municipality vehicle fleet. As road traffic volume is determined by RTM, an error in
this assumption will only influence the vehicle composition, and thus, combining the two
sets of data gives a more accurate result.
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2.4. Traffic Scaling Factors

The five RTM models were run to produce an ADT on all roads for the year of 2016
(details in Section 2.2). For scaling annual traffic to hourly traffic, NERVE uses preset
scales for week of the year, weekday and hour of the day, based on traffic counting and
the Norwegian holiday calendar. For changes in traffic over the years, NERVE relies on
changes in traffic counting. An increasing amount of traffic counters are placed along
predominantly larger Norwegian roads.

Each traffic count requires a coverage of 80% in two consecutive years. A filtering is
conducted if there is an increase of more than 50% or reduction below 80%. The latter was
set low due to large reductions in airport and border areas during the pandemic. Short
vehicle counts were used to scale light traffic, and long vehicles (>5.6 m) to scale heavy.
Annual changes in ADT were made individually for each municipality if the criteria of at
least seven traffic counts were met, otherwise, it was conducted on a regional scale. This is
calculated by all the counting stations that are not used in another individual municipality
within the county. The number of municipalities that have individual calculations varies
with available counts. For 2020, 47 of 356 municipalities had an individual index. As these
are generally the largest municipalities, they cover about 55% of the total traffic volume.

The year-to-year change in traffic as a whole is shown in Figure 5, as measured by
different metrics. After the recovery from the global financial crisis in 2009, traffic volume
has increased every year until 2020 by all available metrics. The traffic index is published
by Norwegian Road Authorities and has, since 2003, been separated into short and long
vehicles. The index is based on traffic counts, and the short index should, therefore, in
theory, be similar to the national index of NERVE (green line), which is based on roughly
the same traffic counts. The National index of NERVE resembles the total driving distance
of the vehicle registry. The exact reason for this is unknown, as the method for the traffic
index is poorly documented.

Figure 5. Annual volume of traffic by different metrics normalized to 2009. The Norwegian road
traffic index (Index) is based on traffic counts and is shown separated for vehicles longer than 5.6 m
(dashed red line) and shorter vehicles (blue line). Light (yellow line) and heavy (dashed purple line).
Distances are primarily based on odometer readings and are the total of all Norwegian registered
vehicles. The green line shows the annual change in driving distance in the NERVE model (used for
both light and heavy vehicles).
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2.5. The NERVE Model

The core of the NERVE model is, as with any bottom-up emission model, to connect
the activity data with the emission factors. Once the input data are in the corresponding
formats, calculations are relatively straight-forward. The basic calculation unit is the road-
link, but vehicle distribution is on the scale of the 356 municipalities in Norway. To obtain
emissions, NERVE first collects all road-links and the total traffic within the boundaries of
each municipality (k) calculated as:

DDk = ∑
r

D(r)× ADT(r)× Ndays (1)

where D is the length of each road-link (r) and the annual daily traffic (ADT) is the average
traffic over a year. Ndays is the averaging period. DDk is then the total distance driven
within the domain of municipality k. DDk is calculated separately for each of the traffic
classes “Light = L”, “Heavy = H” and “Buses = B”. Each traffic class is then separated into
segments by the road vehicle driving distance data:

Fk,Veh =
FVeh × NVeh

Fk × Ntotk
(2)

where NVeh and Ntotk are the amounts, and FVeh and Fk are the driving distances of the
individual and total vehicles, respectively, in a given municipality. Fk,Veh is the fraction of
vehicle km of a given segment on the road expressed as the fraction of its total traffic class
for each municipality.

To obtain the traffic on the roads of a municipality Fk(Veh), the traffic exchange with
other municipalities is used. This matrix describes the internal (Ik) and external (Ek) traffic
based on the origin of the traffic:

Fk(Veh) = Ik × Fk,Veh + ∑
j 6=k

Ej × Fj,Veh (3)

With this traffic exchange, Fk(Veh) is the weighted mix of vehicles on the roads of
each municipality. If there is no exchange of traffic with the outside (Ik = 1) and Fk(Veh) =
Fk,Veh.

NERVE uses an HBEFA dataset extraction that contains 1440 combinations of speed
(V), road type (T), slope (S), urbanization (U), and finally, congestion level (C). For each
combination of these properties, the emission factor for a specific mix of vehicles can be
found on any scale from individual road link, municipality, county or national. For a
municipality with a given set of roads, it is calculated as:

EFk(V, T, S, U, C) = ∑
Veh

EF(Veh, V, T, S, U, C)× Fk(Veh) (4)

With the exception of congestion, the parameters determining the emission factor are
static properties of the road. Congestion is from the RTM models and represented as the
morning (07:00–09:00) and afternoon (15:00–17:00) rush hour delay (see Section 2.2 and
Figure 4). The roads with a rush hour delay are assumed to have congestion. The volume
of traffic that occurs during these times is assumed to be affected by congestion.

3. Emission Results and Discussion

The form of the input data used in this study has limited or restricted access to the
public, and the statistical presentation and interpretation of these data are of interest.
Holistic traffic data, relatively consistent with driving length, to our knowledge, has not
previously been made available, and HBEFA and vehicle data need to be bought. In this
section, we mainly describe the results of the emission model and discuss the implications
from Norwegian policies and emission distributions. While NERVE produces emissions for
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all available compounds of HBEFA, we have chosen to focus the results on NOx, CO2 and
FCMJ . The latter is the only one for which there exists EFs for BEVs. However, it is just an
average over all driving situations, with no resolution on speed or slope. According to the
documentation from HBEFA, it is primarily used to calculate well-to-wheel emission factors.

3.1. Cold-Start Emissions

Cold start emissions are available in HBEFA as emissions per start to be added to
hot emissions. Cold start emissions are a function of engine temperature at start, ambient
temperature, and length of trip and represent a gradual emission decline over time as the
engine reaches optimal working temperatures. To quantify cold start emissions, NERVE
uses the HBEFA combination of trip lengths and parking times for Norway. This was
coupled with the vehicle fleets of each municipality and daily temperatures from observa-
tions. Cold start emissions were calculated for each municipality for equal assumptions of
trip length and parking time following the HBEFA data for Norway. Total emissions in a
municipality were calculated and added to road link annual emissions as a % increase in
each municipality. HBEFA only has cold start emission factors and assumptions for light
vehicles, and so only this is considered.

A sensitivity study was carried out varying one of the input parameters at the time
(Figure 6), the results of which can be summarized as:

• At all temperatures, the inter-municipal differences in cold start emissions are about
10% (Figure 6a), as a result of vehicle differences.

• There is about a 15% decline in emissions from cold start between 2009 and 2020 due
to renewed vehicles (Figure 6b).

• The difference in emissions between the coldest and the warmest year in Oslo is about
20% (Figure 6c).

• The same-year difference in emissions for the same vehicle mix in different regions of
Norway is less than 10% (Figure 6d).

Figure 6. (a) Cold start emissions in different municipalities at different temperatures. (b) The
2009–2020 cold start emissions in different years. (c) Cold start emissions for temperatures in different
years. (d) Cold start emissions in different regions of Norway.
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There are thus some geographic variances in the cold start emissions. The differences
are from the region of Norway, temperature, fleet composition and potentially also between
average trip length and parking time. Overall, the spatial variations are only important if
emissions from cold starts constitute a large part of emissions. The share of total emissions
that stems from cold starts varies significantly between compounds (Table 1)—from more
than 90% for hydrocarbons to about 5% for NOx and CO2. However, there is increasing
evidence that NOx emissions increase with lower temperature, which is accounted for in
HBEFA [50]. The evidence is especially strong for Euro 6/VI emission standard vehicles
(see Figure 7 in [44]). This increase in emissions is the result of suboptimal functioning of
cleaning systems for these vehicles during cold temperatures.

Table 1. Total Norwegian light vehicle emissions from cold and warm engines from the NERVE
model.

Compound Cold (kTon) Hot (kTon) Cold %

CH4 0.39 0.18 68
CO 33.06 7.25 82
CO2 270.1 4966 5.2
FC * 85.75 1698 4.8
FC∗+MJ 3.71 76.0 4.7
HC 6.30 0.72 90
NMHC 5.91 0.54 92
NOx 0.72 15.3 4.5
PM 0.06 0.31 17

* HBEFA FC is fossil fuels only, while FCMJ includes electric consumption. + Unit is in TJ.

3.2. Benchmarking NERVE Emissions

Emissions estimated at the road link are hard to validate at the individual level.
However, several NO2 and PM pollution level simulations have been performed for
Norwegian cities where the NERVE model was used to produce traffic emissions as input
data. The comparison between model results for NO2, for which the main source in
Norwegian cities is traffic, and observations have showed an hourly correlation of 0.5 to
0.8 without a clear bias [41,42].

At the national level, it is possible to compare NERVE CO2 emissions to fuel-sales-
derived emissions, which are used for the official reporting of GHGs emissions to the
United Nations Framework Convention on Climate Change (UNFCCC). The almost direct
relation between CO2 and fuel sales makes it a robust estimate on a national level. Whilst
there should be relatively low uncertainty in the amount of fuel sold at the national level,
there are some uncertainties regarding the engine where the fuel is combusted. Both diesel
and petrol are multipurpose fuels used in a wide range of engines, which also are not on-
road vehicles. Among these are motorcycles, boats and yachts, snowmobiles, lawnmowers,
chainsaws and other small and industrial machines. Moreover, part of the fuel sold in
Norway can be combusted in neighboring countries and vice versa. In sum, these factors
make the CO2 emissions from road traffic derived from fuel sales an indirect estimate,
which, with the above uncertainties, offer a very robust estimate of emissions at the national
level.

Emissions and derived EFs obtained with the NERVE model are compared to fuel-
sales-based estimates. In Figure 7, the solid lines (1–3) represent EFs derived from fuel sales
emissions produced by dividing total emissions from light vehicles by the driving distance
of such vehicles (see Figure 4), whereas the dashed lines (4–6) represent the estimated
EFs from the NERVE model. Both EFs decrease from around 170 g km−1 in 2009 to about
130 g km−1 in 2020. In the period between 2009 and 2012, the difference between the two
sets of EFs is minimal before increasing to about 10% in 2016 (Figure 7bottom). Figure 7
also includes two series of EFs, which are obtained by adjusting for the effect of bio-fuels (2
and 5), and the combined effect of bio-fuels and electric vehicles (3 and 6). The difference
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between the adjusted EFs and the total vehicle fleet EFs indicates the main cause of the
reduction in emission factors.

Figure 7. (Top): Evolution of emission factors of light vehicles based on different metrics. (1) Official
reported emissions based on fuel sales and actual driving distances. (2) Same as (1) but including
non-fossil CO2 emissions from bio-fuels. (3) Same as (2) but only using non-electric driving distance
(DD). (4–6) Same as 1–3 but based on NERVE data. (Bottom): (7) The % difference between official
reported emissions (1) and NERVE (4). (8) The % of energy originated from BEVs. (9–10) The % of
energy in combustion, originating from bio-fuels.

Both the NERVE and fuel-sales-derived EFs have the same share of electric vehicles
in their fleet but somewhat different bio-fuel mix for light vehicles (Figure 7 bottom). The
reason is that there is a difference between the % of bio-fuel mixed in petrol and diesel.
NERVE has a somewhat higher share of emissions coming from petrol, where the bio-mix
is significantly lower. In the time period investigated here, the decrease in emissions per
kilometer can be due to; (1) more fuel-efficient vehicles; (2) bio-fuels mix; (3) increase in
electric vehicle shares. Relative to 2009, 2020 is the first year where electric vehicles are
the main cause of lowering EFs in Norway, with a decrease slightly above 12%, whereas
bio-fuels represent an 8–10% decrease, and more fuel-efficient vehicles contributed to 5%
lower EFs.

Emissions from traffic have steadily grown since 1990 (Figure 8), and the main driver
is the annual increase in traffic volume up to 2020. As a result, a near doubling of vehicle
kilometers has occurred on Norwegian roads over the last 30-year period (Figure 5). Since
2009, CO2 emissions have stabilized or been slightly reduced, mainly due to the increase
in bio-fuels and electric vehicle shares. Emissions in NERVE respond differently to all
variables, such as driving conditions and the changes in the fleet composition. Emissions
from the combustion of bio-fuels, such as bio-diesel, bio-ethanol or the different blends in
diesel and gasoline, largely vary with the percentage of added bio-fuel, fuel type, and the
type of vehicle [51]. HBEFA does not include EFs for bio-fuel nor for their blends, and to
our knowledge, no other comprehensive EF database exists that covers all the variables
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included in the NERVE model. Therefore, whilst the bio-fuel mix is applied at the national
scale, only CO2 emissions are considered to be influenced by the blend of bio-fuels in
gasoline and diesel, and all other emission compounds are considered to be unaffected.
This may add some uncertainties, especially regarding the production of aldehydes from
the combustion of alcohol fuels blended in gasoline [52] or in relation to lower CO and
higher NOx emissions from bio-diesel than from conventional diesel [51].

Figure 8. Bars: Emission by type of vehicle. Light shaded bars are based on reported fuel-sales-
derived estimates. Solid bars (right shifted) are from the NERVE model. p: petrol, d: diesel, g: gas, b:
buses. In this representation, NERVE does not separate LCV fuel but separates buses where gas is
separated for heavy vehicles in official statistics.

In 2020, the COVID19 pandemic broke out, and severe travel restrictions were put
on the population in the spring of 2020. The impact on local traffic was initially similar
across Norway, and at the end of the year, there was a 6% drop in light traffic (Figure 5).
Locally, the changes in traffic played out very differently for municipalities. With a summer
dominated by domestic tourism, July saw an increase in overall traffic, whereas most of
the rest of the year was below 2019 levels [53]. However, in several municipalities on the
border with Sweden and in the one where Norway’s main airport is located, the drop in
traffic was above 40% in 2020. The small increase in EF in the model for 2020 is a result of
the fact that the driving distance for PC was reduced more than that of LCV, and given that
the latter has a higher emission factor, the resulting EF is higher.

3.3. Influencing Factors of Emissions

While it is not directly possible to disentangle each component that determines road
emissions based on NERVE, Figure 9 shows scenarios where we changed a single compo-
nent of road or vehicles at the same time. This serves to illustrate the relative influence
of each factor on CO2 and NOx emissions, along with fuel consumption. This enables
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an evaluation of the sensitivity to change and the relative importance of each factor. The
vehicle changes are also a good indicator of how emissions may change in going forward.

Figure 9. Changes from 2020 emissions, under different scenarios, for CO2, NOx and energy con-
sumption (MJ). Each data point represents a municipality, and the black dot, the mean weighted
by municipal driving distance. Scenarios: “Max Sinewy”, we changed all roads in Norway to the
smallest type of road the sign speed would allow and chose sinewy roads where HBEFA had its own
category for those. “Max Slope” we changed all roads into ±6% declination roads. “Max Congestion”
we placed all traffic in category “Stop+Go2”. “No Congestion” we removed all congestion. “No
Slope” we made all roads flat. “Optimized” assumes to be a rural motorway with a speed limit of 60
km/h, for which most vehicles have their lowest emission factors in HBEFA. “PC Petrol”: all light
traffic is petrol PCs, retaining the age/size distribution. “PC Diesel”: all light traffic is diesel PCs,
retaining the age/size distribution. “PC Electric”: all light traffic is BEVs. “Euro6”: all light traffic is
Euro6, retaining fuel. “LCV”: all light traffic is LCVs, retaining fuel and age. “PC”: all light traffic is
PCs, retaining fuel and age.

In the scenarios marked with red and blue background in Figure 9, we made changes
to the driving conditions while retaining the distribution of the vehicle fleet composition.
Numbers for national average emission change are listed in Table 2. Emissions directly
increase with road curvature, increase in slopes and notably with congestion levels (red
background scenarios). The “optimized” scenario produces the lowest emissions, and if
all traffic in Norway were driven under these driving conditions, CO2 and NOx emissions
would be 18% and 29% lower than those calculated for 2020, respectively. Of the scenarios,
the potentially strongest influence on emission factor from HBEFA comes from driving
on congested roads (“max congested”). However, in reality, the slope of the road has
more influence in most Norwegian municipalities than congestion. In HBEFA, the lowest
emission factors are generally for rural roads, and there is a trade-off between larger road
types (lowers emissions) and speed that has a u-shaped emission factor curve bottoming
around 60 km h−1 (see Figure 2 for details). Thus, to lower emissions, there is potential in
making better roads, but as most of the emission increases from road conditions come from
speed and road size properties not related to congestion and slope, the feasibility of any
major changes is doubtful.
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Table 2. Total emission change for Norway. From Figure 9.

Comp PC LCV EURO 6 PC Electric PC PHEV PC Diesel PC Petrol

Energy −5.5 28.0 −12.4 −68.1 −22.3 5.0 10.0
CO2 −6.6 33.6 −17.4 −100 −26.6 10.2 12.5
NOx −14.3 77.6 −92.8 −100 −90.3 59.2 −77.7

Comp Optimized No Slope No Congestion Max Congestion Max Slope Max Sinewy

Energy −18.0 −3.2 −1.3 177.2 16.8 1.2
CO2 −18.2 −3.2 −1.4 178.0 16.9 1.3
NOx −29.9 −8.7 −1.8 159.2 49.8 3.1

At the bottom in Figure 9, the emission changes are induced by introducing changes
in the vehicle fleet composition while retaining the actual driving conditions. For NOx,
most vehicle scenarios would reduce emissions to below 75%. The exceptions are changing
all vehicles to LCV (94% diesel) and all PC running on diesel. Upgrading to Euro6 filtering
systems would efficiently reduce all NOx emissions to less than a quarter of 2020 levels.
Plug-in Hybrid Electric vehicles (PHEV) are also almost exclusively petrol-electric in
Norway and, therefore, have limited NOx emissions (−90%). All of these indicate that any
renewal of the vehicle fleet, independent of fuel, would make emissions in the years to
come significantly lower.

PC Petrol vehicles have, on average, 12% higher emissions of CO2 than the average
light vehicle, whereas PC diesel have slightly lower emissions (−10%). The average vehicle
registered as LCV has significantly higher emissions (33%). In NERVE, PHEV are driven
20% of the time on an electric engine but outperform that in CO2 emissions, emitting
26% less than the average light vehicle. The EURO 6 scenario can be seen as renewing all
vehicles in Norway, retaining the fuel composition, and the emissions reduction for CO2
would be 17%.

Energy consumption and CO2 emissions are very similar across all scenarios (Figure 9),
with one important exception, i.e., all BEV scenarios. As in this study, only direct emissions
are taken into account, CO2 goes to zero, but total energy consumption drops by 68%. The
reason for this is mainly ICE heat loss in combustion engines (e.g., [54,55]). This is one
largely overlooked aspect of BEVs that are marketed predominantly as climate-friendly.
They are very energy efficient and cost-efficient, at least for most of Europe at least.

3.4. Changes in NOx Emissions Per Municipality

The EFNOx for light vehicles in all Norwegian municipalities for a given year is shown
in Figure 10 for 2009, 2014 and 2020. As each municipality has a local vehicle fleet consisting
of an exchange of traffic with surrounding municipalities, it is representative of the traffic
inside the municipality rather than the traffic of the vehicles registered there. The properties
of the road network and congestion levels have important influences.

In 2007, a fiscal policy was introduced to benefit diesel cars. The new policy had a
Certificate of Conformity registration tax for differentiated CO2 emissions [15]. Authorities
also made announcements appealing to the public to use diesel versus petrol vehicles.
Thus, the following years saw a fast shift in new car sales and, thereafter, in the share of
diesel vehicles on the road. Similar policies were introduced around the same time across
Europe [8]. As a consequence, diesel vehicle share growth escalated to a peak in 2015, with
no apparent effect on the emission factors, and CO2 emissions from PC kept increasing
(lines 1 and 4 in Figures 7 and 8).
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Figure 10. Each municipality is represented by a circle, the size of which corresponds to the number
of vehicles registered, and the color represents the 11 regions of Norway. Some selected municipality
names are also rendered. (Top): NOx Emission factors in each municipality vs. the corresponding
population density in 2020. The bubble size is proportional to the number of vehicles registered in
each municipality and colored by region. Data shown for 3 years with increasing opacity 2009, 2014,
and 2020 along with fitted second-order polynomial lines. (Bottom): NOx Emission factors in each
municipality vs. the average vehicle age in 2020.

The largest and most densely populated urban center is Oslo. Several of the larger
surrounding municipalities follow in population density along with the other main cities
in Norway. In 2009, there was a positive relation between population density and the NOx
emission factor (fitted green line in Figure 10). The main reason for this is that these areas
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have congestion, for which NOx emissions are more sensitive than other compounds (see
Figure 9). Following sales, an increased diesel share increases NOx emissions in the most
densely populated areas. In 2014, NOx emission factors were lower than those in 2009 in
low population density areas, presumably as a result of new vehicles being introduced
predominantly near the urban centers and used PCs (predominantly petrol vehicles) being
sold as second-hand vehicles outside metropolitan areas. The effect of the policy thus led to
increased NOx emission in urban areas, resulting in continued exceedance of the NO2 limit
value in areas where many people live. Conversely, in 2020, high populated areas exhibited
the lowest NOx EF in Norway, whereas the highest were observed in low-populated areas
(fitted yellow line in Figure 10). This is because all new vehicles sold today have lower
NOx emissions than any old vehicles.

3.5. Implications of the Electrification

The transition from an electric PC share below 1% in 2014 to above 20% in 2020 has
not come by itself. In a similar way to the diesel financial incentives implemented in 2007,
a fiscal policy to promote the purchase and use of BEVs has been developed in recent last
years. It started in 1990 with trial periods for a temporary exemption from registration tax,
and currently, the incentives include exemption from 25% VAT on new vehicles, permanent
use of transit lanes, reduction in company car taxes, exemption from paying car ferry fees,
and exemption or discounts from parking and toll systems [14]. Several years of incentives
have resulted in reaching a 84% share of BEVs sales in Norway in January 2022.

In addition to reducing local direct CO2 and air pollutant emissions, the electrical
engine is highly efficient and able to utilize virtually all available energy for propulsion.
This is unlike combustion engines, where around 65–72% of the energy is lost due to heat
losses, friction and pumping losses [54]. The energy consumption per kilometer derived by
the NERVE model reflects this aspect. BEVs use about a third of the energy on the road as
combustion vehicles. By a full transition to BEV, the 32 TWh that was used in road traffic in
Norway could be reduced to about 12 TWh. For comparison, the total residential energy
consumption in Norway was 50.6 TWh in 2020 [56]. Without being directly transferable,
an energy saving of 20 TWh is thus significant.

Even though the use of BEVs entails several advantages, there have been controversies
regarding their overall sustainability. Environmental equity concerns have been pointed
out in light of BEV’s accessibility by higher socioeconomic consumers [57]. Based on the
data in NERVE, it is not possible to directly link economic data to car ownership on an
individual vehicle basis. However, on a municipality level, there are several economic
indicators that can be coupled with the data from NERVE. One example is the household
income decile, while others include household income, Gini coefficient and other private
wealth parameters [56]. Figure 11 shows the share of the population with income in the top
two income deciles and the BEV share of the same municipality. Figure 11 and the data for
2020 in Figure 10 share several features.

Municipalities are distributed along the x-axis in a similar way for all three parameters:
higher income, newer vehicles and higher population density. Financial benefits from the
use of BEV vehicles are most prominent in cities, where parking, congestion and toll station
fee reductions have the highest impact and also more available charging infrastructure
relative to local travel patterns. The most plausible argument is that these local incentives
are the reason for the high share of BEV and that without these, the transition would be
significantly slower. However, the beneficiaries of local BEV policy can entail the shift of
older vehicle technology from the urban to the rural areas, contributing to energy injustices
and exacerbating rural vulnerabilities. Alternative policies have been suggested to avoid or
minimize energy inequalities from electric mobility policies [57].
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Figure 11. Share of km driven by electric light-duty vehicles in Norwegian municipalities vs. the
share of the population with income above the 20% national percentile in 2020. Colors and sizes as in
Figure 10.

The life cycle environmental impact of BEVs has been extensively addressed in the
literature, and concerns have been raised with regards to the high environmental cost of
production [58]. The environmental impact of BEVs has been reported to be higher than that
of conventional vehicles due to battery manufacturing. However, their use phase represents
an improvement compared with conventional vehicles, although it largely depends on
the share of clean energy generation [59]. Different aspects during the use phase of BEV
are still under debate, for instance, non-exhaust emissions from BEV in comparison with
conventional vehicles [60]. There are two characteristics of BEVs that contribute to their
relevance to non-exhaust emissions; (i) BEVs combine regenerative braking and friction
braking systems, whereas internal combustion vehicles rely on friction braking; (ii) BEVs
are currently heavier compared to their ICE equivalent. The regenerative braking systems
contribute to reduced brake wear emissions, although their higher weight will potentially
increase stronger brake wear and higher resuspension [61–63]. Therefore, the contribution
of the ware processes to PM emissions means that the transition from internal combustion
vehicles to BEVs will slightly reduce the threat to human health [64].

4. Conclusions

The need for high-resolution emission inventories has long been part of the demand for
air quality assessments and management. With emerging abatement strategies to mitigate
climate change, bottom-up high detailed climate gas emission inventories are also needed
to evaluate the most cost-effective strategies and monitor the status regarding set targets.

The NERVE model incorporates both climate gases and air quality traffic emissions. A
benefit of having a combined source of both is that they can be cross-validated. Previous
studies have shown NERVE-derived NO2/NOx concentration to be relatively unbiased
in several places. Moreover, NERVE CO2 emissions compare well with national estimates
for fuel-sales-derived emissions. The high-resolution emissions can be used to detail
influencing factors and causes of regional changes. Therefore, a bottom-up model is a
valuable tool for exploring the causes of changes in emissions that are not available from
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other sources. The results presented here, thus, have valuable details in them that can help
understand recent and future changes in road traffic emissions in Norway.

We find that while improving road properties can potentially increase emissions,
congestion, slopes and road curvature, in actuality, it increases NERVE traffic emissions
relatively little. With current roads, there is only a marginal gain looking at road properties,
with the possible exception of speed. To achieve significant emission reductions, the vehicle
composition needs to be improved. For NOx, the model results indicate that emissions
have plummeted in the last few years and are set to continue that decline with any renewal
of the vehicle fleet. Cold start emissions are important for some components but only make
up about 5% of emissions for CO2 and NOx.

Our results imply that the reason for the CO2 emission increases between 2010 and
2015 is that traffic was outgrowing fuel efficiency improvements. Since then, there has been
a steady decline, first as an effect of increased bio-fuel share in ICEs. The year 2020 marked
the first time that the BEV share was the most important cause of emissions reductions.
With an accelerated growth in vehicle sales shares, followed by an increase in road vehicle
shares of BEVs, emissions will continue to rapidly decrease. This will be most prominent
for light vehicles, which will see their share of all tailpipe emissions drop.

The restructured tax policy initially incentivized diesel ICE light vehicles, a policy
that failed to significantly reduce CO2 emissions and entailed an overall increase in NOx
emissions, especially in densely populated areas. Today’s BEV policy has co-benefits
in targeting NOx, CO2 and fuel energy efficiency, all declining rapidly. While there are
production concerns about BEVs, their introduction on roads is already impacting transport
emissions, and the impact is set to grow as most newer vehicles on Norwegian roads are
now BEVs. Furthermore, the heterogeneous distribution of BEVs across Norway shows
that the financial incentives to buy electric vehicles foremost benefited a limited segment
of the population and has had success primarily in areas with strong local incentives and
where people can afford new vehicles. The economic benefit of incentives predominantly
falls to people in areas with strong socioeconomic indicators, which can be problematic
both for equality and the broader popularity of incentives.

There remain several open questions concerning the overall sustainability of BEVs,
but the peak of ICE vehicles has clearly been reached in Norway. The geographical
heterogeneity of electrification in the transport sector in Norway mirrors the international
situation and the disparities between countries. While emission reductions will be achieved
fast in markets with a young vehicle fleet, changes in emissions will be slower for other
regions, and here especially, NOx can also increase in the short term.
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