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A B S T R A C T   

Air pollution involves multiple health and economic challenges. Its accurate and low-cost monitoring is 
important for developing services dedicated to reduce the exposure of living beings to the pollution. Particulate 
matter (PM) measurement sensors belong to the key components that support operation of these systems. In this 
work, a modular, mobile Internet of Things sensor for PM measurements has been proposed. Due to a limited 
accuracy of the PM detector, the measurement data are refined using a two-stage procedure that involves 
elimination of the non-physical signal spikes followed by a non-linear correction of the responses using a mul-
tiplicative surrogate model. The correction layer is derived from the sparse and non-uniform calibration data, i. 
e., a combination of the measurements from the PM monitoring station and the sensor obtained in the same 
location over a specified (relatively short) interval. The device and the method have been both demonstrated 
based on the data obtained during three measurement campaigns. The proposed correction scheme improves the 
fidelity of PM measurements by around two orders of magnitude w.r.t. the responses for which the post- 
processing has not been considered. Performance of the proposed surrogate-assisted technique has been favor-
ably compared against the benchmark approaches from the literature.   

1. Introduction 

Air pollution is a significant environmental, economic, and social 
problem. Its consequences for a global economy are manifested in 
healthcare costs, worsened quality of life, as well as premature death 
rates [1,2]. Those effects are especially important in developing coun-
tries where measures oriented towards preventing excessive air pollu-
tion—resulting from rapid industrialization—are often neglected [3–5]. 
The short- and long-term effects of pollutants in the form of, e.g., carbon 
and nitrogen (mono)oxides, or particulate matter (PM) on human 
health, environment, and economy are well understood [6,7]. Among 
the mentioned contaminants, particles with diameter of up to 2.5 μm 
(also referred to as PM2.5) belong to the most dangerous ones as they can 
penetrate natural body barriers and pass to the bloodstream resulting in, 
e.g., cardiovascular and/or respiratory problems [8,9]. According to a 
World Health Organization (WHO) [10], air pollution is the cause of 
around seven million premature deaths per annum [11]. Its growing 
costs associated with the ever increasing healthcare expenditure and 

negative impacts on the Earth’s biosphere are far from negligible 
[6,7,13,14][12]. From this perspective, constant and accurate moni-
toring of the PM-related pollution seem to be of high importance 
[15,16]. Reliable PM measurements are crucial for development of early 
warning systems dedicated to provide information on sudden bursts, or 
sustaining high levels of contaminants. Availability of such data is 
invaluable for introduction of appropriate measures for preventing/ 
mitigating the effects of pollution exposure (e.g., masks, air filters, stay- 
at-home requests, etc.). High resolution and possibly short measurement 
time belong to the important factors determining usefulness of the 
mentioned systems, especially in urban areas where accurate modeling 
of air quality is difficult due to its high spatial and temporal dynamics 
[16–18]. 

The accurate PM2.5 pollution monitoring is performed using complex 
and expensive stationary instrumentation. The systems are normally 
owned by local governments and (due to a high cost) are set up in a 
handful of carefully chosen locations over the given area [19,20]. 
However, in urban areas—due to the mentioned short-term variations of 
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air contaminants—the monitoring stations are of limited use for per-
forming accurate and timely measurements for the purpose of e.g., 
research, monitoring, or development of early warning services. 
Mentioned challenges, manifested in the form of information gaps 
resulting from scarcity of the precise systems (time- and resolution-wise) 
[19,21], can be mitigated using low-cost sensor networks based on the 
Internet of Things (IoT) technology [15,22,23]. Sensor-based solutions 
(once appropriately calibrated/tuned) proved to be capable of providing 
useful data on the air quality, as well as its temporal and spatial dy-
namics [21,24,25]. 

A significant bottleneck of the existing low-cost sensors for PM 
measurements include their transitional unexpected behaviors man-
ifested in the form of, e.g., non-physical signal spikes, noise, unexpected 
lack of pollution variations over time, or measurement drift [21,26]. 
These effects, often referred to as outliers [19,21,25,27,28], have to be 
identified and removed from the data. In [25], a simple spike identifi-
cation method based on comparison of sensor responses with balanced 
reference data obtained from the neighboring monitoring stations has 
been proposed. Alternative method, where outliers detection involved a 
comparison of the measurements with responses of the kriging model 
constructed based on the sparse data from the reference stations has 
been proposed in [27]. Yet another approach involves analysis of the 
outliers based on the expected probability of the data residuals [21]. The 
common drawback of the mentioned methods is that they are not 
applicable for in-situ refinement of the responses. The main advantage 
of in-situ data processing is a lack of need for maintaining constant 
connectivity with external servers/cloud in order to provide accurate 
spatiotemporal information on the pollution within the given location. 
Consequently, the approach improves the large scale systems perfor-
mance as, in the case of network failure, the data can be stored and send 
upon re-connection. In-situ post-processing also reduces the data- 
transfer demand which is due to smaller size of packets that for raw 
information accompanied with environmental parameters. In [27], the 
problem related to local data analysis has been mitigated to some extent 
using a procedure oriented towards identification whether the sensor 
response is plausible compared to the residuals of the smooth data. Apart 
from the proposed algorithms, detection of spikes and other signal 
anomalies based on a cognitive approach that involves visual inspection 
of the characteristics is still considered as an accurate, albeit tedious, 
approach [21,29]. The available body of literature indicates that the 
problem concerning a simple and low-cost elimination of outliers for PM 
measurements capable of supporting in-situ correction remains open. 

Another challenge related to PM measurements using the low-cost 
sensors involves limited reliability of the obtained data [20,30–34]. 
The problem is associated with high, non-linear variations of accuracy 
w.r.t. changing environmental conditions such as temperature and hu-
midity [20,30,34]. The measurement precision may fluctuate within the 
range of around a dozen up to a few hundred percent compared to the 
reference data [30]. The fluctuations of the sensor accuracy can be 
corrected using appropriate techniques that involve analysis of the 
sensor responses and environmental conditions [31–34]. In [31], inac-
curacy the PM2.5 measurements has been reduced using an analytical 
model based on the κ-Kohler theory that expresses the relation between 
the air humidity and size of the particulate matter. The model has been 
used to obtain up to 10% improvement of the PM2.5 measurement ac-
curacy compared to the reference data [31]. Another approach based on 
analysis of the pollutants composition in urban environments, as well as 
their ability to absorb water particles that deteriorates sensor-based 
measurements has been considered in [33]. The method involves anal-
ysis of the air contaminants composition and refines correction of [31] 
resulting in up to 30% improvement of the measurements quality 
compared to the uncorrected data. Alternative techniques involve 
application of regression models to reduce the PM2.5 measurement in-
accuracy by around 5% [34]. Other methods, based on the random- 
forest-based modeling, have also been considered for refinement of 
the sensor data fidelity [20,34]. Regardless of the differences between 

the discussed approaches, they all rely on analysis of the large amounts 
of data to extract the correction layers. Additionally, in [33], the tuning 
of the model parameters based on assumptions on the composition of the 
air pollutants might be required to obtain satisfactory performance. The 
usefulness of the discussed methods for refinement of different datasets 
than the ones used for extraction of the models either remains unverified 
or deemed unsustainable [34]. An exception is the work [20], where the 
model constructed based on the training dataset has been re-used to 
correct another while maintaining comparable data quality. The 
correction-related problems include limited (or lack of thereof) infor-
mation on the model identification cost [20,32,34]. The latter is 
important when in-situ refinement of the measurements is considered. 
From this perspective, reliable models that do not rely on a priori in-
formation [32], can be identified using relatively low number of training 
points and at a low cost are yet to be developed. 

In this work, an architecture of a compact IoT-capable platform for 
air pollution monitoring has been proposed. The device embeds the low- 
cost sensors dedicated to measurements of PM pollutants and environ-
mental conditions, as well as the connectivity gear and internal power 
supply. A relatively low accuracy of the utilized PM detector is enhanced 
using a two-stage procedure that involves de-spiking and multiplicative 
correction of the PM data. The refinement process is realized by means 
of a kriging surrogate identified based on the training points that are 
automatically pre-selected from the sparse calibration data. Perfor-
mance of the proposed post-processing method has been demonstrated 
based on the several test cases concerning measurements of the PM2.5, as 
well as particulate matter with up to 1 μm and 10 μm diameters, 
respectively. The obtained results indicate that the presented mecha-
nisms improve the measurements fidelity (w.r.t. the reference station 
data) by up to two orders of magnitude compared to the uncorrected 
responses. The proposed correction technique has been analyzed in 
terms of numerical efficiency, as well as compared against the state-of 
the art approaches from the literature. The surrogate-assisted bi-stage 
correction provides up to 3-fold improvement of the PM measurement 
accuracy with respect to the benchmark techniques. 

2. Materials 

Design of the mobile platform for accurate PM monitoring is a sub-
ject to multiple requirements concerning accuracy, repeatability of the 
measurements, but also modular architecture. The latter is important for 
straightforward extension of the system capabilities and its development 
oriented towards implementation of a reliable IoT-capable service. On 
the other hand, one has to consider constraints resulting from mobility 
and intended affordability of the system. These include, among others, 
small dimensions, relatively long battery-powered operation, as well as 
the use of possibly low-cost (hence, mass-produced) components. In this 
section, the architecture of the PM measurements platform oriented 
towards addressing the mentioned criteria has been considered. It 
should be noted that, due to the relatively low cost, the utilized com-
mercial sensors cannot compete with high-performance measurement 
devices installed in stationary monitoring units. From this perspective, it 
is expected that the data gathered by the device will be prone to errors. 
To mitigate this problem, appropriate low-cost data correction mecha-
nisms have been proposed which are explained in Section 3. 

2.1. Background and assumptions 

The negative effects of PM2.5 pollution on health are well studied 
[8,35,36]. Even low concentration of pollutants in the air (expressed in 
μg/m3) contributes to increased incidence of respiratory, and/or heart 
diseases [36]. It is estimated that—in the European Union alo-
ne—reduction of the PM2.5 levels could increase of the average life ex-
pectancy of the population by around 13 months [39]. In 2005, WHO 
determined the acceptable average annual concentration of PM2.5 at 10 
μg/m3 [37]. In 2021, the level was refined to 5 μg/m3 with the tentative 
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targets for the industrialized areas (cities, in particular) of up to 75 μg/ 
m3 daily and 35 μg/m3 yearly, respectively [38]. As already mentioned, 
accurate monitoring of the pollution level in urban environments is 
difficult due to their dynamics. For instance, in the city of Gdansk 
(Poland) accurate measuring stations are sparsely deployed which hin-
ders reliable monitoring of air quality. Location of the agglomeration in 
a narrow valley between the sea and the hills covered by the dense 
forests results in notable weather changes across the area which further 
amplifies the PM monitoring-related challenges. From this perspective, 
availability of the mobile platform that provides reasonably accurate 
information on pollutants concentration would be invaluable. 

It is expected that the monitoring system should provide: (i) modular 
architecture oriented around mobility, (ii) PM detector, (iii) environ-
mental sensors, (iv) wireless connectivity, (v) computational capabilities 
to perform in-situ refinement of the measurements and re-calibration of 
the correction models. Other desirable parameters include the use of 
hardware that balances the performance and cost (with prospects for 
optimization of the latter), high measurement accuracy, and relatively 
long battery operation. The desirable average error between the sensor 
and monitoring station responses is below 5 μg/m3. 

2.2. Platform architecture 

The proposed platform was designed in accordance to the re-
quirements specified above. The schematic diagram of the device is 
shown in Fig. 1. It consists of independent components (modules) con-
nected to the computing platform based on a system-on-a-chip (SoC). 
The latter provides a series of multi-purpose input/output (I/O) ports, 
but also a computational power necessary for acquisition, processing 
and transmission of the data. The remaining subsystems of the device 
include: (i) PM sensor, (ii) cellular connectivity module, (iii) environ-
mental sensors capable of measuring temperature, humidity and pres-
sure, (iv) data storage unit, as well as (v) energy distribution module 
with batteries. 

The utilized SoC comprises a field programmable gate array (FPGA) 
with two advanced RISC machine (ARM Cortex-A9 667 MHz; note that 
RISC refers to reduced instruction set computer) processors and 512 MB 
RAM integrated on a Zynq board (ZYBO) from Digilent [40]. The plat-
form enables integration of the device modules in terms of software and 
hardware. Owing to the availability of ARM processors, the system is 
capable of running the operating system (here, Linux). It provides a 
framework for interfacing with the devices, but also enables the use of 
high-level mechanisms for data acquisition, storage (including 
communication protocols, file systems, etc.), and cloud connectivity. 
The latter is considered important for application of the device as a 
component of the IoT-based air quality monitoring system which will be 
discussed elsewhere. Computational power of the ARM is considered 
sufficient for in-situ refinement of the PM measurements performed by 
the embedded sensor (see Section 4.5 for details). The data storage is 
performed on a secure digital card. The communication between the 
system components is realized (through a dedicated circuit board) using 

serial protocols [41,42]. With relatively compact dimensions of 122 mm 
× 88 mm, as well as a high number of input/output ports the Zynq 
platform is considered suitable for development of the air-quality 
monitoring system. 

The utilized PM sensor, SPS30 manufactured by Sensirion, performs 
pollution data acquisition using the laser scattering technique [43,79]. 
The device offers relatively long-term measurements stability, support 
for identification of PM1, PM2.5, and PM10 particles, as well as small 
volume (41 mm × 41 mm × 12 mm). According to the specification 
[43], the sensor is capable of detecting pollutants in a range of up to 
1000 μg/m3 with the precision of up to ± 10 μg/m3 (the latter, however, 
might be lower according to the data presented in Section 4). 

Communication services are provided using the module BG96 man-
ufactured by Quectel [44]. The device supports a range of satellite 
navigation and cellular technologies. Monitoring of the environmental 
data is realized by the 24-bit barometer, hygrometer, and temperature 
sensor from Hoperf Electronic [45]. The accuracy of the measured 
temperature in a range from –20 ◦C to 60 ◦C is ± 0.3 ◦C. 

Power for the system is delivered through an in-house circuit that 
embeds the STM32 microcontroller, MAX9938 voltage current moni-
tors, and a set of four 18650 lithium-ion batteries. The module provides 
up to 24 h of cordless operation [46–48]. Furthermore, it allows for 
monitoring of the system current draw, charging state, and the battery 
level. The system is enclosed in a custom housing fabricated using an 
additive manufacturing technology (fused deposition modeling) using 
polyethylene terephthalene glycol-modified filament. Figs. 2 and 3 show 
an exploded view of the device components and its photograph. It is 
worth noting that, in order to ensure a decent performance of the 
cellular connectivity, the location of the antenna within the device has 
been adjusted as described in Section 2.3. 

2.3. Performance-oriented connectivity tuning 

High-performance wireless connectivity is an important for mobility 
of the proposed IoT system. Here, the data transmission is realized using 
a cheap, uniplanar antenna characterized by an omnidirectional radia-
tion pattern. It should be noted that the field performance of the radiator 
is a function of its allocation w.r.t. the remaining components of the 
system. The latter ones (or rather their ground plane layers) act like 
reflectors for the radio-frequency signals which affect antenna 

Fig. 1. An IoT-based PM measurement device – a block diagram.  

Fig. 2. Exploded view of the proposed device: (a) Zynq board [40], (b) battery 
pack [48], (c) housing, (d) PM sensor [43], (e) connectivity module [44], and 
(f) power management unit [46,47]. 
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characteristics. Here the environmental effects on the antenna perfor-
mance have been investigated using electromagnetic (EM) simulations. 
The results shown in Fig. 4 indicate that location of the structure above 
the sensor boards results in increase of its directivity—roughly perpen-
dicular to the boards—which is considered acceptable from the stand-
point of maintaining high-performance connectivity. In this work, the 
radiator has been mounted in the location shown in Fig. 4(b). 

3. Methods 

The PM sensor of Section 2 suffers from a limited accuracy man-
ifested in the form of a high measurement noise (spikes/peaks being up 
to an order of magnitude higher compared to the detection range as 
shown in Fig. 5), as well as non-linear variations of the pollution levels 
with respect to the reference data. The latter normally stem from vari-
ations of the environmental conditions such as temperature, or humidity 
[30,34]. On the other hand, correlation of the PM measurements with 
the reference station data can be improved using appropriate post- 
processing techniques. Here, a two-step method which implements the 
detection and elimination of non-physical peaks, as well as a surrogate- 
assisted correction of the responses has been proposed. The first step, 
involves identification of the signal spikes based on the PM envelope 
constructed from multiple measurement channels offered by the sensor. 
The de-spiked data is then refined using the wavelet-transform-based 
method [49,50]. In the next stage, the surrogate-based correction of 
the sensor measurements using a kriging model constructed based on the 
carefully selected data is performed [51,52]. The calibration set is 
extracted from the sparse responses obtained for both the sensor and the 
reference station. To make the paper self-contained, a brief discussion on 
the wavelet-based spikes detection, as well as kriging modeling is also 
provided. The methods discussed in this work have been implemented in 

MATLAB [76]. 

3.1. Problem formulation 

Let Rs(t, k) = [Rs(t1, k1) … Rs(tn, kn) … Rs(tN, kN)]T (here, n = 1, …, N) 
be the vector representing the concentration of particulate matter with 
up to 2.5 μm diameter recorded by the sensor of Section 2.2 over a 
period of time t = [t1 t2 … tN]T; k = k(t) = [k1 … kN]T is a vector of 
temperatures recorded over t. For simplicity of notation, we will often 
substitute Rs(t, k) as Rs(t) = [Rs.1 … Rs.n … Rs.N]T or simply Rs without 
the change of the meaning. Also, the same style of description will be 
used to denote other time-series sensor data. 

The responses Rs(t) are distorted by the noise in the form of non- 
physical signal spikes (their amplitudes exceed operational range of 
the sensor; cf. Fig. 5) and feature variable accuracy of the PM detection 
as compared to the reference station data Rr(t) over the same period of 
time t. The goal of the correction process is two-fold. First, a mapping of 
the form is to be applied: 

d : Rs(t)→Rd(t) (1)  

where Rd(t) is the refined sensor data with eliminated spikes and d de-
notes the function (cf. Section 3.4) that implements a threshold/ 
envelope-based de-spiking followed by a wavelet-based peaks identifi-
cation/rejection. The accuracy of the refined Rd responses is then 
improved using the multiplicative correction of the following form 
[53,54]: 

Fig. 3. The proposed mobile PM measurement system – a photograph.  

Fig. 4. The effect of the cellular antenna location within the system on its radiation characteristics (at the 830 MHz frequency): (a) sole radiator, as well as the 
antenna mounted in the system (arrows indicate location) in the (b) top-left corner, and (c) bottom-right corner. The omnidirectional radiation pattern of the 
structure is distorted by the ground plane layers of other modules of the device. Scale on the right illustrates gain of the structure. 

Fig. 5. The PM2.5 pollution data obtained in Gdansk (Poland) using the SPS30 
sensor on: (a) Jan 12, 2022, and (b) Apr 26, 2022. The measured peaks are up to 
an order of magnitude higher compared to the detection range denoted by red 
lines. Note that the PM concentration is in mg/m3. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Rc(t) = A∘Rd(t) (2) 

Here, Rc(t) represents the refined response of the sensor, “◦” denotes 
the component-wise multiplication, whereas A is the correction 
component derived from a kriging surrogate model [51]. The latter is 
constructed based on the calibration data derived from both the refer-
ence station Rr and de-spiked sensor responses Rd. The measurements 
used for calibration include sensor and monitoring station responses 
acquired in the same location over the same period of time t. The cor-
rected response Rc is considered valid within the ranges of PM and 
temperatures for which the surrogate model has been identified. 

3.2. Wavelet-based detection of peaks 

The wavelet-based spike detection boils down to estimation of the 
resemblance between the signal peaks and the considered kernel func-
tion [49,50]. Here, the latter is represented by a Haar wavelet which 
provides reasonable shape-approximation of the peaks obtained from 
the sensor [55]. The method involves decomposition of the signal into a 
multi-scale representation (in terms of the wavelet coefficients) followed 
by a multi-level hypothesis testing oriented towards identification of the 
spike. The scales are defined as B = {b0, …, bj, …, bJ}, where b0/bJ are 
determined based on the sampling rate of the signal and the expected 
peaks duration [50]. The intermediate scales {b1, …, bJ–1} are uniformly 
allocated between the b0 and bJ, respectively. 

The wavelet coefficient of the nth component Rs.n of the Rs signal (cf. 
Section 3.1) at a scale bj is given as w(j, n) =<Rs.n, ψ j.n>, where ψ j.n is the 
kernel function [50]. It should be noted that the measured signal con-
tains both information and noise. From this perspective only the signal 
part that carries information is used to represent the wavelet coefficient. 
It can be extracted from the noise (individually at each scale bj) using the 
hard threshold rule [49,50]: 

ρ(w) =
{

w, when |w|〉T = σ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ln(N)

√

0, otherwise
(3) 

Here, ρ(w) acts on the wavelet coefficients w obtained at the scales 
from B, whereas the threshold T is a function of the noise coefficients, 
standard deviation σ, and the number of time-series samples [49,50]. 

The detection is performed (separately for each scale bj) by testing 
the null hypothesis that the signal (here, understood as the spike) is not 
present and its alternative that the combination of the signal and noise 
does exist [56]. Owing to the transient nature of peaks, the alternative 
hypothesis holds only within the specific time intervals [49]. Finally, the 
decisions resulting from the hypothesis testing performed at all scales 
are combined and utilized to estimate the arrival time of the peaks. For 
the ith peak the time of its occurrence is calculated as [49,50]: 

ti = ‖BH.i‖
− 1
∑

bj∈BH.i

ti.j (4)  

where BH.i = {bj ∈ B: |w(j,n)| > Θj, n ∈ CH.i} with CH.i being the subset of 
the basis function translations for which the hypothesis related to the 
presence of the signal and noise holds over all scales; Θj is the hypothesis 
acceptance threshold at the bj scale [49]. The parameter ti.j represents 
estimated location of the ith peak at bj and is defined as [49,50]: 

ti.j = argmax
n∈CH.i

{
|w(j, n) | : |w(j, n) |〉Θj

}
(5) 

The identified peaks candidates can be further removed using 
appropriate post-processing [50,57–59]. 

3.3. Kriging-based modeling 

Kriging surrogate is used to provide a correction layer dedicated to 
refine the PM sensor measurements. The model provides a smooth 
approximation of the data based on the interpolation of all the training 
points used for its construction. The formulation of kriging follows the 

description of [52,60]. Let X = [x1 … xm … xM]T (m = 1, …, M) 
represent the vectors of training points and Y = [y1 … ym … yM]T their 
responses. Now, let xl be the lth point—specified within the bounds 
determined by the training data—with unknown response. The surro-
gate model response yl = RKR(xl) can be obtained as [60]: 

RKR(xl) = μ+ υT Ψ− 1(Y − 1μ) (6) 

Here, 1 denotes the vector of ones and υ = [cor(y1, yl) … cor(yM, yl)]T 

is the vector of correlations between the training data and the yl pre-
diction. The correlation matrix and a mean base term are given as [60]: 

Ψ =

⎡

⎣
cor(y1, y1) ⋯ cor(y1, yM)

⋮ ⋱ ⋮
cor(yM , y1) ⋯ cor(yM , yM)

⎤

⎦ (7)  

μ =
1T Ψ− 1Y
1T Ψ− 11

(8) 

For the pair of selected G-dimensional designs xi = [xi.1 … xi.g … xi. 

G]T, xj = [xj.1 … xj.g … xj.G]T and their responses yi, yj, the correlation is 
expressed using a basis function of the form [60]: 

cor(yi, yj) = exp

(

−
∑G

g=1
θg
⃒
⃒xi.g − xj.g

⃒
⃒pj

)

(9) 

The parameter vectors θ = [θ1 … θk … θK]T and p = [p1 … pk … pK]T 

can be estimated through maximization of the ln-likelihood function 
realized using a suitable numerical optimization algorithm [51]. For 
more detailed discussion on kriging and the implementation used in this 
work, see [51,52,60]. 

3.4. Spikes detection and elimination 

As already mentioned, the peaks detection and elimination proced-
ure are conducted in two stages. First, the hard-threshold and envelope- 
based PM data refinement is performed. It should be noted that—even 
though the main focus of the work is identification of PM2.5 pollu-
tion—the sensor is also capable of estimating the PM10 and PM1 pol-
lutants concentration. Owing to the correlation of PM1, PM2.5, and PM10 
pollution levels resulting from growing granularity of the measurements 
(e.g., particles with up to 2.5 μm diameter also account for PM1 pol-
lutants) [72–75], the amount of data required for accurate de-spiking 
can be increased. 

Let R(t) = [R1(t) R2(t) R3(t)]T where Rj(t) = Rj(t, k), j = 1, 2, 3, 
represent the concentration of PM10, PM2.5 (note that R2(t) = Rs(t); cf. 
Section 3.1), and PM1 particles over a period t obtained from the sensor 
of Section 2. From the R(t) matrix, non-physical measurements in the jth 
row and the nth time instance (column) can be identified and removed 
as follows: 

Re.j.n =

{
Rj.n, when Rj.n ⩽ δ1

0.5
(
Rj.n− l1 + Rj.n+l2

)
, otherwise (10)  

where n – l1 and n + l2 represent the nearest indices around nth element 
of Rj for which the responses are below the δ1 threshold. Here, δ1 = 375 
μg/m3 is used, which corresponds to a five-fold violation of the (tenta-
tive) maximum acceptable 24-hour exposure limit to the PM2.5 pollution 
specified by the WHO [38]. Note that δ1 is user-defined and its particular 
value can be determined based on analysis of the historical data avail-
able for the given area. The refined matrix is of the form: 

Re = [Re.1 Re.2 Re.3 ]
T
=

⎡

⎣
Re.1.1 Re.2.1 Re.3.1

⋮ ⋮ ⋮
Re.1.N Re.2.N Re.3.N

⎤

⎦

T

(11) 

In the next step, the corrected responses are used for construction of 
the lower-bound PM envelope E = [E1 … EN]T. The latter represents the 
minimum value among the available PM measurements with different 
levels of granularity. The component of E in nth time instance is 
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extracted as: 

En = min
(
[Re.1.n Re.2.n Re.3.n ]

T ) (12) 

The envelope is utilized to eliminate the peaks with amplitudes lower 
than the hard-defined threshold δ1. The process is performed based on 
analysis of the relative variation between the Re.j (the selected j depends 
on the PM of interest) and the envelope. In other words, the nth 
component of the Rp = [Rp.1 … Rp.n … Rp.N] vector is constructed from E 
and Re.j as follows: 

Rp.n =

{
En, when ξn⩾δ2
Re.j.n, otherwise (13) 

Here, ξn = (Re.j.n – En)/max(|Re.j – E|), whereas the user-defined 
threshold is δ2 = 0.05. It should be noted that substitution of the iden-
tified peak with the envelope response introduces some inaccuracy to 
the Rp data. On the other hand, the typical discrepancy for the consid-
ered test cases is around an order of magnitude lower compared to the 
one resulting from the presence of the spike. Consequently, the process 
results in overall improvement of the PM measurements fidelity. 

In the second stage of the refinement process, the remaining peaks 
are identified using the method of Section 3.2. The approach detects a 
set of time points tp ∈ t, based on (5), for which the spikes are present. 
For the identified time instances—similarly as in (10)—the signal is 
reconstructed as the average of the nearest PM2.5 response before and 
after the peak. Owing to low computational cost, the process has the 
potential for in-situ operation, albeit at the expense of a certain time- 
delay resulting from (10). An important remark is that the denomina-
tor of the coefficient ξn, i.e., max(|Re.j – E|), has to be “stabilized” over a 
set of measurements. This can be achieved (at a low cost) through its 
calculation as ξn = (Re.j.n – En)/Ehist, where Ehist represents the history of 
the sensor responses given as: 

Ehist =

{⃒
⃒Re.j.n − − En

⃒
⃒, when n = 1

max
( [

Ehist,
⃒
⃒Re.j.n − − En

⃒
⃒
] )

, otherwise (14) 

The example PM2.5 measurements at each stage of the de-spiking 
process are shown in Fig. 6. The generality of the proposed approach 
might be affected by capability of the sensor in terms of the number and 
span of PM granularity levels that can be identified [72]. For instance, 
usefulness of PM10 for correction of PM1 might be limited (depending on 
the environment) due to notable (up to an order of magnitude) differ-
ence between the dimensions of accounted particles [72]. From this 
perspective, the envelope (12) should be constructed using a combina-
tion of the PM measurements with similar granularity to the target 
parameter (here, PM2.5). 

3.5. Identification of the kriging-based data correction model 

The sensor-based PM measurements are characterized by fluctua-
tions of accuracy w.r.t. the high-end monitoring stations. In this work, 
the discrepancies are accounted for using a kriging model [60]. Upon 
identification, the surrogate is used as the multiplicative correction layer 
(2) for the Rd responses [54]. The goal of the process is to provide the 
mapping of the discrepancies between the Rd(t) and Rr(t) responses, 
while ensuring that the model (6) provides a representation of the 
calibration data over the available (possibly large) ranges of the envi-
ronmental conditions and PM measurements. This is ensured using an 
appropriate data treatment scheme oriented towards correction of the 
signal rather than the local noise. 

Due to the sparse and non-uniform distribution of measurement 
samples as a function of e.g., temperature and/or PM-levels (see Fig. 7), 
their direct use for construction of the surrogate would restrict useful-
ness of the interpolation model to a small fraction of the data. Here, the 
problem is addressed through a linear transformation and confinement 
of the PM measurements oriented towards optimization of the number/ 
location of representative training points that can be used for model 

Fig. 6. The PM2.5 data de-spiking procedure: (a) trimming of the peaks above 
δ1 (red line), (b) determination of the envelope (red) based on PM1–PM10 re-
sponses, (c) envelope-based spikes rejection, and (d) wavelet-based elimination 
of peaks. The measurement data has been acquired on Jan 16, 2022 in Gdansk 
(Poland). Note that, in (a), the PM concentration scale is in mg/m3, whereas in 
(b)-(d) it is in μg/m3. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Conceptual illustration of the sensor data processing steps. Visualization 
of the input data points: (a) before and (b) after minimization of (15), as well as 
(c) identification of the designs located within the user-defined distance λ 
around the reference designs (left) and aggregation of their associated re-
sponses (right; visualized using a two-dimensional projection) to generate the 
set of responses Yr* = {yi}i = 1, …, J corresponding to the Xr* designs. 
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identification. The conceptual illustration of the process is shown in 
Fig. 7. 

Let Xt = {x1, …, xm, … xM} and Yt = {y1, …, ym, …, yM} represent the 
sets of sparsely located test points and their corresponding responses 
acquired over a certain period of time (i.e., the calibration data). Here, 
xm = [x1.m x2.m]T = [Rd(tm, km) km(tm)]T and ym = Rr(tm, km)/Rd(tm, km), 
respectively. Then, let. 

Xr = {xi}i = 1, …, J be the set of standard basis points located on a grid 
and scaled w.r.t. the unknown lower/upper l/u bounds that results from 
the distribution of the available test points [61]. The dataset trans-
formation and confinement are realized by solving the minimization 
problem of the following form: 

z* = argmin( − U1(z) + U2(z) ) (15)  

where the vector z = [l u θ]T = [l1 l2 u1 u2 θ1 θ2]T represents the lower/ 
upper bounds for the Xr set and slant angles for x ∈ Xt (see Fig. 7) used 
for determination of the transformed dataset Xts: 

Xts = {xS(θ) : x ∈ Xt } (16)  

where 

S(θ) =
[

1 tan(θ1)

tan(θ2) 1

]

(17) 

The objective function U1(z) = |Xc|/|Xt| where Xc = {x: x  ∈ Xts ∧ l ≤
x ≤ u} (note that |•| denotes the cardinality of the set) involves maxi-
mization of the number of data points confined within l/u bounds w.r.t. 
Xt, whereas U2(z) = <[d1 … di … dJ]T > with di being a minimum dis-
tance between the ith reference point xi ∈ Xr and the elements from the 
transformed set of training data (note that the symbol <•> denotes 
average). The final design z*—found through solving (15)—is used to 
generate the dataset Xts* and its associated responses Yts* = Yt (note that 
change of Xts basis does not alter PM measurements obtained from the 
sensor), as well as Xr*. The latter is the Xr set rescaled w.r.t. the bounds 
obtained from the optimized z* vector. 

Once the transformed set Xts* and its associated responses Yts* are 
found, a total of J sequences {Xs.1, …, Xs.i, …, Xs.J}, where Xs.i = {x: x  ∈
Xts*, xi ∈ Xr* ∧ ||x – xi|| ≤ λ} are constructed where λ is the user-defined 
parameter that exhibits search radius around the ith design from Xr* 
(here, λ = 3). The elements of Xs.i are ordered from the least to most 
distant from xi. For each sequence, the responses of the first k 
designs (here, k = 5) used to construct the response using the median 
yi = M(Yts*(Xs.i.1-k)). Finally, the set of reference points Xr* and their 
responses Yr* = {yi}i = 1, …, J are used for construction of the kriging 
interpolation model RKR as described in Section 3.3. The example 
functional landscapes obtained from Xr* and Yr* are shown in Fig. 8. The 
identification of the kriging-based correction model can be summarized 
as follows:  

1. Obtain Rd(t, k) and Rr(t, k) and k(t) data over a selected time period t 
(cf. Section 3.1);  

2. Define the reference set Xr;  
3. Set z(0) and obtain z* by solving (15); use the optimized parameters 

to generate Xts*;  
4. Extract the set of Yts* responses that corresponds to the designs from 

Xts*;  
5. Obtain Xr* by rescaling Xr w.r.t. the optimized l/u bounds (see Fig. 7 

(a)-(b));  
6. Generate the set of averaged responses Yr* = {yi}i = 1, …, J from the 

elements of Yts* that correspond to the ordered elements of Xts* 
located in the vicinity to the reference designs from Xr* (see Fig. 7 
(c));  

7. Use the Xr*, Yr* for identification of the kriging model RKR (cf. 
Section 3.3). 

The identified surrogate model can be used to refine the data pre- 
processed as described in Section 3.4. The multiplicative correction 
vector for the N-point measurement is of the form A = [a1 … aj … aN]T, 
where: 

aj = RKR
( [

Rd
(
tj, k
(
tj
) )

k
(
tj
) ]

S(θ*)
)

(18) 

It is worth reiterating that identification of the correction coefficient 
for jth sample involves transformation of the sensor data using matrix 
(17) where the slant angles are determined from solving (15). The latter 
is performed only in the course of model identification process. The 
correction layer can be applied both to vector, or scalar responses. 
Consequently, once the model is established, it has the potential to 
support in-situ refinement of the sensor-based PM measurements. 

It should be noted that grid-based design of experiments used to 
generate Xr is not mandatory. It has been selected for simplicity, how-
ever for multi-dimensional input data utilization other methods such as 
Latin hypercube, or orthogonal sampling may be of interest as well 
[62,63]. Bearing sufficient amount of training samples obtained from 
the sensor and the weather station, the model features reasonable ac-
curacy within the optimized l*/u* bounds. 

3.6. Summary of the data-correction method 

The correction of the Rs(t, k) samples acquired by the sensor involves 
de-spiking of the data followed by its transformation oriented towards 
determination of the multiplicative correction and, finally, determina-
tion of the refined response from (2). Assuming that the kriging surro-
gate model (6) is identified, the PM measurement correction of the N- 
point data vector can be summarized as follows (see Fig. 9 for a block 
diagram):  

1. Perform spikes elimination on Rs using (10) and obtain the refined 
matrix of sensor responses Re; 

Fig. 8. Example functional landscapes of the kriging-based correction layer extracted from different Xr* (red rectangles) and their corresponding Yr* responses (blue 
circles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2. Generate the envelope E from (12) and obtain Rp using de-spiking 
method (cf. Section 3.4);  

3. Perform wavelet-based peaks elimination (cf. Section 3.2) on Rp to 
generate Rd.  

4. Set j = 1;  
5. Calculate aj = RKR(xjS(θ*)) where xj = [Rd(tj,k(tj)) k(tj)] as in (17);  
6. If j = N set A = {aj}j = 1, …, N go to step 7; otherwise set j = j + 1 and 

go to step 5;  
7. Calculate Rc from (2);  
8. (Optional) Generate Rc* by smoothing the obtained Rc data. 

It should be reiterated that, owing to the low cost, the proposed data 
de-spiking and correction methods can be implemented in the hardware 
of Section 2. The goal of the optional Rc data smoothing is to mitigate the 
effects of local noise (resulting from a limited accuracy of the RKR 
model) on quality of the responses obtained from the PM sensor. 
Although in Section 4 the above algorithm has been demonstrated using 
vector data, it can also be executed on the individual time-series data 
samples. 

4. Results and discussion 

Validation of the proposed device and data correction methods have 
been performed based on a series of measurements obtained in the city 
of Gdansk (Poland). The particulate matter data has been acquired for a 
total of 48 days during three campaigns between: (i) January 12th, 2022 
and January 18th, 2022, (ii) February 2nd, 2022 and February 16th, 
2022, as well as (iii) April 6th, 2022 and May 4th, 2022, respectively-
—in the same location as the reference monitoring station in order to 
obtain information required for identification of the correction model, 
as well as its further verification of the models quality [64]. It should be 
noted that, even though the proposed data correction methodology is 
dedicated for improving the PM2.5 detection accuracy, the usefulness of 
the proposed method has also been demonstrated for particles of 
different diameters. Finally, the presented device and data-correction 
method have been benchmarked against solutions from the literature 
in terms of the performance of the measurements. Discussion on cost of 
the device has also been provided. The quantitative comparison between 
the sensor and the reference station data is expressed in terms of a root- 
mean square error (RMSE): 

eRMSE =
1̅
̅̅̅
N

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

j=1

(
R
(
tj
)
− Rr

(
tj
) )2

√
√
√
√ (19) 

Moreover, a coefficient of determination is used to evaluate capa-
bility of the corrected responses in terms of fitting the reference station 
data: 

r2 = 1 −
∑N

j=1

(
R
(
tj
)
− Rr

(
tj
) )2

∑N
j=1

(
R
(
tj
)
− 〈Rr(t) 〉

)2 (20) 

In the above equations, the parameter R (when appropriate) refers to 
the uncorrected, de-spiked, or corrected PM measurements, respec-
tively, whereas N denotes the number of data points in the dataset. It is 
worth emphasizing that r2 = 0 means that predictions are as bad as 
random guess, while r2 = 1 refers to perfect match between the sensor 
and reference station responses. RMSE is expressed in μg/m3. 

4.1. Identification and validation of the data-correction model 

The data-correction model for the PM2.5 pollution has been extracted 
as described in Section 3.5. Here, the first dataset has been used. Fig. 10 
shows a time-series comparison of the sensor and reference station 
measurements [64]. A large discrepancy between the responses (eRMSE 
= 1694) renders a significant part of the Rs(t) data (around 16% of 
samples is characterized by the relative error above 100%) useless for 
accurate prediction of the particulate matter concentration. For the 
same reasons, the responses cannot be directly used for construction of 
the multiplicative correction model. Consequently, de-spiking of the 
measurements is mandatory before RKR identification. The RMSE and 
coefficient of determination for the de-spiked measurements Rd(t) are 
7.88 and 0.73, respectively, which represents a two orders of magnitude 
improvement compared to Rs(t). The resulting data has been used for 
construction of the correction model of Section 3.3. 

The reference set Xt consists of 12 designs located on a 3 × 4 grid (cf. 
Section 3.5). The initial parameters for Xts adjustment are x(0) = [10 1 14 
60 0.3 0]T. The optimized vector x* = [10.16 0.8 13.86 61.1 0.49 
–0.03]T used for the determination of Xts*, Xr* and θ* has been found 
through minimization of (15). It should be emphasized that, due to 
transformation of the already available measurement data, the cost of 
numerical optimization is low (cf. Section 4.5). Next, medians of the 
responses that correspond to the sets of transformed measurements 
located within the distance λ around the reference designs from the Xr* 
set have been calculated to obtain Yr*. Finally, the kriging correction 
layer RKR has been identified using Xr* and Yr* data (cf. Section 3.5). It 
should be emphasized that the training set contains only 12 points, 
whereas Yr for the considered dataset comprises around 1100 samples. 
Furthermore, a total of 50 training samples (roughly 4 points around 
each xi ∈ Xr*) have been used for construction of RKR, which represent 
only 4.5% of the data contained in the Rs(t) and Rr(t) datasets. 

The kriging surrogate RKR has been used for refinement of the Rd 

Fig. 9. A two-step post-processing of the PM measurements that involves data 
de-spiking (stage 1) and kriging-based multiplicative correction (stage 2). Note 
that δ1, δ2, and λ are user-defined whereas θ* is obtained from minimization 
of (15). 

Fig. 10. PM2.5 concentration obtained from the sensor (red) and the reference 
station (black) in: (a) original scale and (b) narrowed down range. High spikes 
present in large part of the measurements render them useless for the air quality 
estimation. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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samples form the first dataset. The results shown in Fig. 11 indicate a 
notable improvement of the Rc responses compared to the Rd data. The 
coefficient of determination calculated for the corrected PM measure-
ments is 0.87, which represents around 16% improvement w.r.t. the de- 
spiked responses. At the same time, the RMSE of the corrected mea-
surements is only 2.98, which represents over 2-fold improvement 
compared to Rd(t). Fig. 12 shows Rd(t) and Rc(t) responses as functions 
of Rr(t) characteristics. The results indicate a significant improvement of 
the correlation between the reference data and corrected responses 
compared to the de-spiked measurements. A comparison of the Rc 
characteristics with the ones obtained after (optional) data smoothing 
Rc*—shown in Fig. 13(a)—suggests that the latter may be useful for 
mitigating the effects of local correction inaccuracy resulting from the 
increased noise and/or locally worsened performance of the RKR model. 
Although the response changes resulting from smoothing are not sub-
stantial, they improve r2 by another 2% to 0.89. The RMSE of the Rc* is 
2.82 which also represents a slight improvement compared to Rc. Evo-
lution of the r2 factor for consecutive steps of the sensor responses 
refinement is illustrated in Fig. 13(b). 

4.2. Refinememt of the inaccurate PM measurements 

The kriging correction model of Section 4.1 has been used for 
refinement of the PM measurements gathered in the second dataset. As 
before a large portion of the high-amplitude peaks renders the Rs data 
useless for evaluation of the air quality. Application of the de-spiking 

procedure results in improvement of the eRMSE from 1685 to 5.63 (two 
orders of magnitude). The multiplicative correction of the Rd data results 
in further reduction of the RMSE to 3.13 (r2 = 0.84) which contributes to 
over 44% improvement w.r.t. the de-spiked data. It should be stressed 
out that the correction has been performed using the RKR model con-
structed based on the measurements contained in the first dataset. 
Comparisons of the responses before and after multiplicative correction 
with the reference data is shown in Fig. 14, whereas visualization of the 
Rc as a function of the Rr is given in Fig. 15. 

To validate the effect of increasing the number of calibration data 
points (and their number) on the Rc accuracy, the correction model RKR 
has been re-set using a combination of the measurements from the first 
two datasets. The surrogate identification procedure follows the dis-
cussion from Sections 3.5 and 4.1. Again, the reference set Xr is in the 
form of a 3 × 4 grid. The optimized vector for adjustment of Xts trans-
formation is x* = [9.92 0.69 14.12 59.97 0.16 –0.02]T. The new sur-
rogate has been constructed using a total of 60 samples that amount to 
only 2% of all the available data points. The model has been used for 
correction of the PM measurements from both datasets. As expected, the 
results shown in Figs. 16 and 17 imply that increasing the data density 
improves the predictive performance of the model. The RMSE calculated 
for the refined sets is 2.64 (model r2 = 0.92) which indicates over 2-fold 
improvement compared to the data processed only using the de-spiking 
algorithm. It should be noted that, for the given size of the training set 
Xt, increasing the number of training points beyond certain level results 
in saturation. Consequently, performance of the correction (understood 
as improvement of correlation between Rc and Rr) depends more on the 
distribution of samples rather than their density (see Fig. 7). 

Fig. 11. Comparison of the particulate matter pollution measurements ob-
tained from the reference station (black) and the proposed system (red) after 
correction using: (a) de-spiking method of Section 3.4 (eRMSE = 7.88) and (b) 
de-spiking followed by multiplication-based correction of Section 3.5 (eRMSE =

2.98). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 12. Corrected sensor measurements as a function of the reference station 
data: (a) data with eliminated spikes (r2 

= 0.73) and (b) responses with 
removed spikes and corrected using a multiplicative layer (r2 = 0.87). The red 
line represents linear interpolation of the data. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 13. Correction of sensor-based measurements: (a) comparison of Rr 
(black), Rc (blue), and Rc* (red), as well as (b) “evolution” of the r2 for various 
correction steps of the of the PM measurement. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 14. Comparison of the PM measurements obtained from the reference 
station (black) and the proposed sensor (red) after correction using: (a) the de- 
spiking method (eRMSE = 5.63) and (b) the combination of de-spiking and 
multiplication-based correction (eRMSE = 3.13). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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Notwithstanding, adjusting the number of training points × ∈ Xts* 
around the individual reference designs (controlled by λ; cf. Section 3.5) 
may improve performance of the surrogate in terms of its immunity to 
the local noise. 

4.3. Correction of the PM10 and PM1 data 

Although the main focus of the presented correction method is 
improvement of the PM2.5 detection accuracy, the approach is also 
applicable to correction of the particulate matter pollutants concentra-
tion characterized by different diameters. Here, the refinement of PM1 
and PM10 is considered. The data on pollutants concentration from the 

sensor of Section 2 and the reference stations have been acquired 
simultaneously with the PM2.5 measurements from both datasets [64]. 
Figs. 18 and 19 show comparison of the de-spiked and corrected re-
sponses for the PM1 and PM10 detections using the calibration data 
extracted from the first and second measurement campaigns. Note that 
separate kriging models RKR have been constructed for PM1 and PM10 
data. The RMSE factors calculated for the combined datasets before and 
after correction are 6.38 and 3.05 (r2 = 0.89) for PM1, as well as 6.32 
and 4.07 (r2 = 0.88) for PM10, respectively. It should be noted that the 
uncorrected PM measurements are characterized by eRMSE of 17.8 for 
PM1 and 3437 for PM10. The obtained results indicate that—for the 
considered datasets—the proposed correction methods provide sub-
stantial improvement of PM measurements accuracy when using the 
low-cost sensor of Section 2 [43]. 

4.4. The effects of inter-season measurements on the correction 
performance 

The last case study involves performance analysis of the multipli-
cative correction layer applied to the data obtained during different 
seasons of the year. It should be reiterated that the PM measurements 
from datasets (i) and (ii) have been obtained in the winter, whereas the 
third set has been acquired during the spring. The de-spiking procedure 
of Section 3.4 has been used to reduce the RMSE by two-orders of 
magnitude, i.e., from 1302 (r2 = 0.0018) for Rc to 3.93 (r2 = 0.84) for Rd, 
respectively. In the next step, the correction layer from Section 4.2 has 
been used to further adjust the PM measurements. However, multipli-
cative modification of the response results in deterioration of the Rc 
quality manifested by increase of the eRMSE to 4.62 and decrease of r2 to 
0.67. This unintended effect stems from calibration of the correction 
model using the winter data which do not coincide with the environ-
mental conditions pertinent to the spring season. Consequently, for the 
considered test case the winter-based model is unsuitable for correction 
of the Rd response. The problem has been mitigated through re-set of the 
RKR layer based on the combination of all available datasets. The RMSE 
calculated for the PM data refined using the new model is 3.84 (r2 =

0.85), which represents a slight improvement compared to the Rd. 
For the sake of comparison, another RKR correction layer (based only 

on the calibration data obtained during the spring season) has been 
constructed and used for refinement of the low-fidelity PM measure-
ments. The resulting Rc response is characterized by eRMSE = 3.79 and r2 

= 0.85, respectively. Comparisons of the characteristics generated using 
both RKR models that result in improvement of the PM measurements 
quality are shown in Fig. 20. It should be noted that only slight differ-
ences between both considered Rc responses can be noticed. A more 
detailed discussion concerning identification of the correction layer for 
different environmental conditions is provided in Section 4.6. 

Fig. 15. Refined response of the sensor versus reference station measurements 
obtained for: (a) de-spiked data (r2 

= 0.8) and (b) de-spiked data corrected 
using multiplicative layer constructed based on the training set from Section 4.1 
(r2 = 0.84). 

Fig. 16. Comparison of the PM2.5 from the reference station (black) and the 
sensor responses corrected using the model constructed based on the data both 
datasets (red): (a) the first, as well as (b) the second. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 17. Combined datasets versus reference data: (a) de-spiked model – r2 =

0.81 and (b) de-spiked model with correction layer extracted from both datasets 
– r2 

= 0.93. 

Fig. 18. Comparison of the PM1 measurements from the reference station 
(black) and the sensor after correction (red): (a) the first, as well as (b) the 
second dataset. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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4.5. Discussion and comparisons 

The presented device and correction methods have been demon-
strated based on a total of seven test cases compiled from the mea-
surements acquired during three data-gathering campaigns (cf. Section 
4). The tests considered above include: (a) PM2.5 correction based on the 
first dataset, (b) refinement of the PM2.5 responses from the second 
dataset using the surrogate model from (a), as well as improvement of 
the data from two measurement campaigns using correction layer con-
structed based on the combination of available data for (c) PM2.5, (d) 
PM1, (e) PM10. The remaining two test cases concern: (f) refinement of 
the spring-based PM2.5 data using the RKR model identified from the 
datasets obtained in the winter season, and (g) adjustment of the spring- 
based PM2.5 data using the kriging model from the same season. A 
summary of the metrics expressing performance of the de-spiking/ 
correction is gathered in Table 1. It should be reiterated that, for all of 
the considered measurements, the excessive noise rendered the 

uncorrected data of little to no use for reliable assessment of the par-
ticulate matter concentration in the air. The obtained results clearly 
show that the de-spiking procedure is mandatory to make use of the 
gathered data. Moreover, utilization of the proposed correction layer 
improves the averaged r2 (i.e., calculated for all of the considered ex-
periments) by around 7% (from 0.80 to 0.87), but also provides nearly 2- 
fold reduction of the average RMSE (from 5.8 μg/m3 to 3.3 μg/m3). For 
the selected test cases, smoothing of the responses provide further, albeit 
small, improvement of the PM measurements fidelity. It is worth noting 
that, with the average RMSE for the corrected measurements of around 
3 μg/m3, the assumption concerning maximum permitted discrepancy 
between the reference and sensor measurements of 5 μg/m3 is fulfilled 
(cf. Section 2.1). 

Performance of the proposed data de-spiking and correction methods 
has been compared against the approaches from the literature 
[21,31,33,34] based on the PM2.5 measurements from the datasets ob-
tained in the winter season (cf. Section 4). A total of eight test cases have 
been considered that include the smooth-enhanced peaks elimination 
method (I; Step 1) from [21] combined with (Step 2): (i) random-forest 
[34], (ii) κ-Kohler theory [31], (iii) humidity correction [33], and (iv) 
the proposed kriging-based refinement methods, as well as the proposed 
bi-stage de-spiking method (II; Step 1) coupled with the mentioned 
response correction approaches (Step 2). For the sake of fair comparison, 
the random-forest model was constructed using the same number of 
reference points as the proposed multiplicative correction layer. Due to 
stochastic nature, performance of the former has been estimated as an 
average of 30 independent model identification steps. The results 
gathered in Table 2 indicate that the proposed methods are character-
ized by noticeably better performance compared to the reference tech-
niques. For the considered test case, application of the presented de- 
spiking technique results in improvement of the RMSE and r2 by 64% 
and 15%, respectively. Similarly, the multiplicative refinement provides 
the average improvement of the RMSE and r2 factors by 53% and 13% 
when peaks elimination has been performed using I, as well as 44% and 
7% for the de-spiking using II (proposed) approach. It should be 
emphasized that, among the considered test cases, the introduced 
correction mechanism produced both the lowest errors and the highest 
coefficients of determination. 

Fig. 19. Comparison of the PM10 measurements from the reference station 
(black) and the sensor after correction (red): (a) the first dataset, as well as (b) 
the second dataset. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 20. Comparison of the PM2.5 measurements performed in the spring sea-
son from the reference station (black) and the sensor after correction (red) using 
the RKR model constructed based on: (a) all combined datasets, as well as (b) 
only the third (spring) dataset. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Summary of the sensor-based PM measurements correction.  

Test case Particulate matter Uncorrected De-spiking Correction layer Smoothing 

RMSE [μg/m3] r2 RMSE [μg/m3] r2 RMSE [μg/m3] r2 RMSE [μg/m3] r2 

(a) PM2.5 1694 9•10-4  7.88  0.73  2.98  0.87  2.82  0.89 
(b) PM2.5 1685 10-3  5.63  0.80  3.13  0.84  3.03  0.85 
(c) PM2.5 1688 10-3  6.32  0.81  2.64  0.92  2.50  0.93 
(d) PM1 17.76 0.37  6.38  0.79  3.05  0.89  3.05  0.89 
(e) PM10 3437 5•10-4  6.32  0.81  4.07  0.88  3.72  0.89 
(f) PM2.5 1302 2•10-3  3.93  0.84  3.84  0.85  3.87  0.80 
(g) PM2.5 1302 2•10-3  3.93  0.84  3.79  0.85  3.59  0.82 
Average N/A 1589 5•10-2  5.77  0.80  3.35  0.87  3.26  0.87  

Table 2 
Benchmark of the proposed data refinement methods.   

Method RMSE [μg/ 
m3] 

r2 Method RMSE [μg/ 
m3] 

r2 

Step 
1 

I 10.36 0.66 II (this work) 6.32 0.81 

Step 
2 

I-(i)* 6.92 0.71 II-(i)* 5.13 0.82 
I-(ii) 7.21 0.73 II-(ii) 3.91 0.89 
I-(iii) 7.86 0.71 II-(iii) 4.39 0.87 
I-(iv) 3.43 0.85 II-(iv) (this 

work) 
2.50 0.93  

* Due to stochastic nature of the method, the correction performance has been 
estimated as an average from 30 instances of the identified model. 
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It should be re-iterated that the bi-stage correction procedure pre-
sented in this work is implemented in MATLAB environment [76]. 
Consequently, the developed methods and algorithms need to be 
rewritten in programming languages suitable for embedded devices in 
order to enable in-situ post-processing of the PM measurements. Use-
fulness of the method for on-device data refinement can be justified by 
comparing computational performance of the personal computer (PC) 
and the developed device. The machine used for post-processing is based 
on a 10-core Intel Xeon e5-2650 v4 processor (clock speed – 2.2 GHz) 
and 16 GB RAM. The mobile device, is equipped with a double core ARM 
Cortex-A9 unit with 667 MHz clock. An important remark is that 
MATLAB is a high-level programming language and thus it is not well 
optimized for performance. The correction is performed using only one 
of the ten available Xeon cores (typical for MATLAB-based programs). 
The average (per core) performance of the considered processor-
s—evaluated using 7zip package and expressed in the million in-
structions per second (MIPS) [77]—amount to 3456 and 511 for Intel 
and ARM, respectively. Consequently, the PC is around 7-fold faster 
compared to the developed device. Table 3 summarizes the numerical 
costs (averaged over 100 independent runs) associated with each stage 
of the PM measurements correction, as well as identification of the 
kriging model. The presented numerical results are obtained based on 
the dataset considered in Section 4.4. For the considered test case, the 
estimated combined costs of de-spiking and multiplicative correction 
correspond to 0.2 s (PC) and 1.33 s (mobile device), respectively. The 
approximated cost of in-situ kriging model re-set amounts to 20 min 
which is acceptable having in mind infrequent execution of the process 
(i.e., only when the device is located near the reference station), as well 
as availability of the second ARM core that can ensure the device sta-
bility. It should be emphasized that the typical PM measurement in-
tervals are in the order of minutes to dozens of minutes. Therefore, the 
CPU would be in the idle state for most of the time (important for the 
sake of energy conservation). Another important remark is that the post- 
processing cost has been estimated based on a relatively large number of 
4235 samples corrected at once. It is expected that, in the real-world 
scenario, the de-spiking and correction procedures will be performed 
on the sets comprising at most a few dozen of PM samples. Finally, the 
provided estimations do not account for a poor optimization of 
MATLAB-based programs w.r.t. to, e.g., algorithms implemented using 
C/C++ languages (very popular for embedded devices due to the effi-
cient use of available resources) [78]. The mentioned factors indicate 
that the data of Table 3 represent the worst-case estimate to the 
correction of PM measurements. 

It is worth reiterating that, owing to the low cost of the proposed 
spike elimination and multiplicative based correction/identification, 
refinement of the sensor measurements and enhancements of the 
surrogate-based correction layer could be implemented directly on the 
device of Section 2. It seems to be an important advantage over more 
complex correction schemes such as the ones based e.g., on neural 
networks, which require substantial computational power in order to 
extract the necessary information for sensor calibration [65–67]. 

The cost-breakdown of the proposed device, provided in Table 4, 
indicates that the price of the utilized sensors amounts to only around 
18% of the system price, whereas the data-processing, power, and 

connectivity units contribute to almost 70% of the overall cost. The 
results show a potential of the presented platform for further cost opti-
mization, which could be achieved, e.g., through maintaining a balance 
between the performance and computational power of the system, as 
well as optimization of the energy consumption. It should be noted, 
however, that more detailed discussion on the topic is beyond the scope 
of this work. 

It is worth emphasizing that the direct price-wise, comparison of the 
system with other solutions from the literature is challenging. One of the 
main reasons is that, to the best knowledge of the authors, the detailed 
costs of components used for construction of the competitive in-house 
mobile sensors are not provided. Furthermore, the mobility aspect of 
the other solutions is often reduced to focus on the dimensions rather 
than implementation of the detector as a part of the standalone platform 
capable not only for acquiring of the PM measurements, but also sup-
porting cloud connectivity, data processing, and cordless operation. The 
solutions from the literature either involve the discussion of the sensors 
that could be accommodated to work as components interconnected 
with mobile communication devices [68–70], or rather stationary de-
vices with capability to be re-set in different location [70,71]. The 
mentioned cases either lack the necessary mobility aspects (e.g., cordless 
operation, wireless connectivity), or do not consider the challenges 
related to deviations of data accuracy. 

4.6. Limitations of the method and recommendations 

As already mentioned in Sections 3.4 and 3.5 the presented de- 
spiking and correction techniques are based on a few assumptions that 
might not hold for in general. Possible bottlenecks of the approach 
include: (i) limited PM granularity ranges supported by the low-cost 
sensor, (ii) low (or lack of thereof) correlation between various PM 
levels, and/or (iii) lack of environmental/reference data that would 
justify the application of the kriging-based correction model. 

The first two challenges are partially related, as correlation between 
the PM levels changes with the measurement conditions, as well as the 
difference between physical size of particles accounted for within the 
given granularity [72–75]. In other words, for the selected PM level, the 
correlation between the mass concentration of particles might weaken 
when the physical discrepancy (i.e., size) between them increase. From 
this perspective, construction of the de-spiking envelope based on the 
measurements characterized by similar (order-wise) granularity is rec-
ommended. Consequently, the low-cost sensor is supposed to support 
PM measurements at multiple levels around the one of interest for air 
quality monitoring. Another important aspect associated with the 
problem involves the environmental effects on the PM-levels correla-
tion. As shown in [72], in closed areas (buildings, transportation means, 
etc.) the resemblance between the mass concentration of particles 
characterized by different sizes is noticeably better compared to open 
space. The effect stems from dynamics of the particles movement 
induced by the external factors such as wind, temperature changes, etc. 
However, even when the correlation between the PM samples is limited, 
the main role of the envelope is to replace the identified non-physical 
PM measurements. The response is further refined using wavelet- 
based method and the kriging correction layer. 

Table 3 
Estimated CPU-time of the PM data correction.  

CPU Intel e5-2650 v4 ARM Cortex-A9 

MIPS/core [77] 3456 511 
Relative speed/core 1 0.15 
Test De-spiking CPU cost 0.04 s 0.27 s* 

Correction 0.16 s 1.06 s* 
Model re-set 180 s 1200 s*  

* Estimated based on the relative speed of the ARM-based CPU w.r.t. Intel 
Xeon (per single core). 

Table 4 
Cost-breakdown of the proposed IoT mobile platform for PM measurements.  

Category Item Price [EUR] Fraction of cost [%] 

Sensors Particulate matter 40 17.8 
Environmental 84 

Connectivity GSM module 123 17.7 
CPU and power Zybo Boards with FPGA 233 33.4 

Power supply 129 18.5 
Miscellaneous Interconnections 48 6.87 

Mechanical parts 40 5.73  
Cost per device 697 100  
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As explained in Section 3.5, the kriging-based correction model is 
set-up within the ranges specified by the optimized lower and upper 
bounds that correspond to the environmental conditions for which PM 
measurements from the reference station and sensor are available. 
Consequently, the model is useful for correction only within the 
mentioned ranges or slightly beyond them (due to the ability to indicate 
trends between the environmental factors and the discrepancy between 
the low-fidelity and reference measurements). In other words, one 
cannot expect that the kriging model identified in the winter season will 
be suitable for correction of the sensor data gathered during the spring 
(cf. Section 4.4). The problem can be mitigated by application of the 
multiplicative refinement only to the fraction of the low-fidelity PM data 
which is within the ranges of model validity. On the other hand, given 
availability of the high-fidelity measurements (e.g., due to temporary 
location of the mobile device in the vicinity of the reference station), re- 
set/extension of the correction layer can be performed to improve 
generalization capability of the model. Furthermore, the device can be 
configured so as to switch between the models identified for various 
conditions (e.g., seasons; cf. Section 4.4). These concepts will be inves-
tigated as a part of future work. An important remark is that, even when 
the kriging model is unsuitable for correction due to the out-of-bounds 
environmental conditions, the de-spiking procedure offers a substan-
tial improvement of the detected PM quality with respect to the refer-
ence data (at least for the considered test cases; cf. Section 4.5). 

5. Conclusions 

In this work, a mobile IoT-capable platform for measurements of 
PM2.5 air pollutants has been presented. The device features a modular 
architecture that incorporates the FPGA with integrated ARM processor, 
PM detector, connectivity module, as well as environmental sensors. The 
used low-cost PM detector is characterized by a limited measurement 
accuracy manifested in the form of non-physical spikes in concentration 
of the measured pollutants, as well as non-linear drift of the PM mea-
surements compared to the reference data. The measurements fidelity 
has been improved using the proposed data de-spiking and correction 
algorithms. The first is implemented as a combination of the lower 
bound envelope extracted from the multi-level PM measurements fol-
lowed by the wavelet-based data post-processing. The second is per-
formed using a multiplicative layer in the form of the kriging surrogate 
identified using the calibration set. The latter is carefully extracted from 
the PM sensor and reference station measurements performed in the 
same time interval and location. The device and the correction methods 
have been both demonstrated based on the measurements obtained 
during three data-gathering campaigns. The obtained results show that 
the proposed correction algorithms improve the sensor-based PM mea-
surements fidelity by around two orders of magnitude compared to the 
responses for which post-processing has not been considered. Further-
more, the methods offer up to over 3-fold reduction of the measurement 
error as compared to the benchmark approaches from the literature. 
Although the presented methods and algorithms have been developed 
with correction of PM2.5 pollution in mind, their usefulness for refine-
ment of PM1 and PM10 measurements has also been demonstrated. 

It should be emphasized that identification of the correction model, 
as well as data de-spiking procedure proposed in this work are numer-
ically cheap. Due to availability of the ARM processor, as well as con-
nectivity module, the proposed device has the potential for performing 
in-situ re-set of the multiplicative correction model based on the data 
obtained from the nearby located reference stations (when available). 
The mentioned concept will be the focus of the future work. Fusion of 
the measurements from multiple sensors oriented towards providing 
temporal/spatial monitoring of the PM pollution in the given area, cost- 
related optimization of the platform, as well as validation of the pre-
sented measurement correction methods on different air pollutants will 
also be investigated. Finally, the forthcoming research will concentrate 
on the integration of multiple measurement platforms in the form of the 

IoT-based, cloud-connected system for reliable air quality monitoring 
within the dynamically changing environments. 
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