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ABSTRACT Cross-modal representation learning aims to learn a shared representation space where data
frommultiple modalities can be effectively compared, fused, and understood. This paper investigates the role
of increased diversity in the similarity score matrix in enhancing the performance of the CLIP (Contrastive
Language-Image Pretraining), a multi-modal learning model that establishes a connection between images
and text within a joint embedding space. Two transforming approaches, sine and sigmoid (including two
versions), are incorporated into the CLIP model to amplify larger values and diminish smaller values
within the similarity matrix (logits). Hardware limitations are addressed using a more compact text encoder
(DistilBERT) and a pre-trained ResNet50 image encoder. The proposed adaptations are evaluated on various
benchmarks, including image classification and image/text retrieval tasks, using 10 benchmark datasets
such as Food101, Flickr30k, and COCO. The performance of the adapted models is compared to the base
CLIP model using Accuracy, mean per class, and Recall@k metrics. The results demonstrate improvements
in Accuracy (up to 5.32% enhancement for the PatchCamelyon dataset), mean per class (up to 14.48%
enhancement for the FGVCAircraft dataset), and retrieval precision (with an increase of up to 45.20% in
Recall@1 for the COCO dataset), compared to the baseline algorithm (CLIP).

INDEX TERMS CLIP, cosine similarity matrix, diversity, dual-modal, image classification, image/text
retrieval, joint embedding space.

I. INTRODUCTION
In recent years, there has been a growing interest in con-
necting images and text to facilitate tasks such as image
retrieval [1], [2], text retrieval [3], and content-based image
classification [2], [4]. This interest stems from the fact that
images and text are two fundamental modalities for repre-
senting and communicating information and combining them
can provide richer and more informative representations [5].
Image-text retrieval is specifically tailored to situations where
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the queries originate from one modality, while the retrieval
galleries come from a different modality [6]. For example,
given an image query, the system should retrieve relevant
textual descriptions or captions and vice versa.

Several Deep Learning models have been proposed to
enable machines to understand the relationships between
images and text and to perform various tasks based on this
understanding [7]. One prevalent approach for connecting
image and text is to use a joint embedding space, where
both modalities are represented in a shared feature space
[8], [9]. The goal is to integrate (align) images and text
features in the joint space, such that similar images and
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text are close together in the embedding space while dis-
similar ones are far apart [10]. Many methods have been
proposed to extract the text and image features — also called
encoding — [6], including but not limited to Visual-
Semantic Embedding (VSE) [11], Cross-Attention [12], and
Self-Adaptive [13]. These methods have been evaluated on
various datasets, such as Flickr30K and MSCOCO. The pre-
training paradigm has gained attention in image-text retrieval,
leveraging large-scale cross-modal pre-trained models to
benefit from implicit knowledge and achieve high perfor-
mance [14].

A. MOTIVATION FOR RESEARCH
The CLIP (Contrastive Language-Image Pretraining) model
has emerged as a highly acclaimed and widely adopted
approach for establishing connections between images and
text [15]. CLIP is a state-of-the-art Deep Learning framework
pre-trained on a large corpus of text and images. The model is
based on a transformer architecture designed to learn a joint
embedding space that can capture the relationships between
images and texts. The CLIP model has achieved impressive
results on various benchmarks, like image classification. For
instance, for the renowned Food101 dataset [16], CLIP has
achieved an Accuracy of 95.9%.

CLIP utilizes a contrastive loss function during training to
facilitate learning a shared embedding space for both modal-
ities. CLIP primarily captures the cross-modal interaction by
relying solely on the similarity of global features from each
modality. Here, we specifically focus on introducing more
diversity into the similarity scores generated by the CLIP
model. AlthoughCLIP focuses on optimizing the temperature
parameter (τ ) during training as a log-parameterized multi-
plicative scalar to control the range of similarity scores (log-
its), the concept of artificially introducing additional diversity
to the logitsmatrix has received limited attention in the exist-
ing literature. However, this idea holds potential and mer-
its further scientific exploration and evaluation. To achieve
higher diversity, we incorporate transforming approaches,
including sine (triangular) and sigmoid, into the CLIP model,
which enables the model to differentiate between similar and
dissimilar image-text pairs more effectively. We evaluate our
approach on several benchmarks and show that it leads to
improved performance compared to the original CLIP model.

This paper is structured as follows: After this brief intro-
duction, we present an overview of recent studies pertinent
to the CLIP model. Section II describes our proposed modifi-
cations to the CLIP model in detail, providing an in-depth
analysis of how our approach differs from previous stud-
ies. Section III presents our approach’s experimental results,
highlighting our modifications’ effectiveness. We also thor-
oughly discuss the results and their implications for future
research. Finally, in Section IV, we discuss the limitations of
our work and provide directions for future research. Our anal-
ysis provides insights into text-to-image retrieval and lays the
foundation for future research in this rapidly evolving area.

B. A REVIEW OF RECENT ADVANCEMENTS IN
IMAGE-TEXT REPRESENTATION LEARNING:
FROM CLIP TO NOVEL APPROACHES
Several studies have employed the CLIP approach for
text-image encoding or improved the CLIP model by
introducing novel techniques and ideas. Jia et al. [17] use a
straightforward dual-encoder architecture to align image and
text pairs’ visual and language representations, leveraging a
noisy dataset of over one billion image alt-text pairs. In addi-
tion to employing distinct vision and language encoder archi-
tectures, the primary divergence from the CLIP model lies in
the training data. The model of. Jia et al. [17] — also called
ALIGN — leverages the inherent distribution of image-text
pairs from raw alt-text data while CLIP assembles its dataset
by initially creating a list of high-frequency visual concepts
from English Wikipedia. Saharia et al. [18] introduced ‘‘Ima-
gen’’, a text-to-image diffusion model with deep language
understanding to generate high-quality images from textual
descriptions. According to their findings, large pre-trained
language models demonstrated several clear advantages over
multi-modal embeddings like CLIP when employed as a text
encoder for Imagen.Mu et al. [19] proposed the SLIPmethod,
which combines self-supervision and language-image pre-
training to learn better image-text representations. CLIP is
described as an approach that utilizes language supervision
for learning, while SLIP is introduced as a multi-task learning
framework that combines self-supervised learning with CLIP
pretraining.

Zhai, et al. [20] introduced the LiT (Zero-Shot Trans-
fer with Locked-image text Tuning) method, which enables
zero-shot transfer with locked-image text tuning, using
the pre-trained ViTg/14 model. LiT focuses on utilizing a
pre-trained visionmodel and fine-tuning only the text encoder
while keeping the image encoder frozen or ‘‘locked.’’ This
means LiT retains the pre-trained image encoder’s features
and primarily adapts the text encoder to the specific task.
On the other hand, the CLIP model combines a pre-trained
visionmodel and a pre-trained languagemodel, allowing for a
bidirectional understanding of images and text. Yu, et al. [21]
introduced the CoCa (Contrastive Captioner) model, which
uses contrastive captioning as the foundation for image-text
representation learning. Unlike the standard encoder-decoder
transformers employed in the CLIP model, the CoCa model
takes a different approach. It excludes cross-attention in the
initial half of the decoder layers to capture unimodal text
representations. Instead, it incorporates cross-attention in
the remaining decoder layers to establish connections with
the image encoder, enabling the generation of multi-modal
image-text representations. CoCa achieves a zero-shot top-1
Accuracy of 86.3% on the ImageNet dataset.

Zhou et al. [22] proposed conditional prompt learning
for vision-language models. They extended CoOp (Context
Optimization) [23] by incorporating the additional aspect of
learning a lightweight neural network. Conditional prompt
learning used in the CoOp model emphasizes using prompts
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to guide the model’s responses, while CLIP focuses on
learning joint representations of images and text through
contrastive learning. Pham et al. [24] improved the CLIP
model through a combined scaling method called BASIC.
The BASIC model achieves a top-1 Accuracy of 85.7%
on the ImageNet ILSVRC-2012 validation set, surpassing
similar models like CLIP. BASIC scaled up the contrastive
learning framework of CLIP in three dimensions: data size,
model size, and batch size. Their dataset comprises 6.6 bil-
lion noisy image-text pairs, 16 times larger than CLIP. Yao
et al. [25] introduced the FILIP method, incorporating a
maximum token-wise similarity between visual and textual
tokens to guide the contrastive objective. CLIP and ALIGN
models focus on the similarity of global features of each
modality for cross-modal interaction, lacking the ability
to capture finer-level information such as the relationship
between visual objects and textual words. In contrast, FILIP
introduces a novel cross-modal late interaction mechanism
in contrastive loss, enabling fine-grained semantic alignment
between image patches and textual tokens. All these methods
represent fundamental advances in image-text representation
learning and have contributed to improving the state-of-the-
art in this area; however, the idea of incorporating extra
diversity into the CLIP similarity matrix has not been exten-
sively explored in the current body of literature.

II. METHODS
A. CLIP MODEL
Our research paper is built on the CLIP, a sophisticated Deep
Learning framework developed by. Radford et al. [15]. The
main objective of CLIP is to facilitate machines in compre-
hending the meaning of an image and its corresponding text
in a joint representation space.

The CLIP model begins by embedding images and text
separately using an image encoder such as ResNet or Vision
Transformer and a text encoder such as CBOW or Text
Transformer. These embeddings are then projected into a joint
embedding space and normalized to allow for representa-
tion in a shared feature space. This joint embedding space
enables the model to establish connections between images
and text based on their shared representation. The approach
of constructing batches and the associated objective were
initially presented as the multi-class N-pair loss by Sohn [26].
More recently, Zhang et al. [10] extended this technique for
contrastive representation learning in the medical imaging
domain, specifically for text and image pairs.

In short, the CLIP model considers two different archi-
tectures for the image encoder. The first architecture uses
ResNet50 [27] as the base model with modifications like
ResNet-D improvements [28] and antialiased rect-2 blur
pooling [29]. The global average pooling layer is replaced
with an attention pooling mechanism using transformer-style
multi-head QKV attention. The second architecture exper-
iments with the Vision Transformer (ViT) [30] with some
minor modifications of adding an additional layer normaliza-
tion to the combined patch. The text encoder is a Transformer

[31] with specific architecture modifications [32]. The model
uses lower-cased byte pair encoding for text representation
and is capable of incorporating pre-trained language models.
The final feature representations of the image and text are
projected into a shared multi-modal embedding space using
linear projections.

The CLIP model aims to maximize the cosine simi-
larity between an image and its corresponding text while
minimizing the cosine similarities with all other unmatched
texts. The cosine similarity is a metric used in the model to
measure the similarity between two vectors. It calculates the
cosine of the angle between two vectors and provides a value
between −1 and 1. A cosine similarity of 1 indicates that the
vectors are identical, while a value of −1 indicates they are
entirely dissimilar. A value of 0 suggests that the vectors are
orthogonal or independent. Accordingly, any negative values
are adjusted to 0.

The similarity between each image and text pair in the joint
embedding space is computed as scaled pairwise cosine simi-
larities, known as ‘‘logits’’. The logits represent the degree of
similarity between each image and text pair and are crucial for
evaluating the model’s performance. The contrastive loss is
computed then using the symmetric cross-entropy loss, which
compares the similarity scores of positive and negative pairs
(Figure 1).

B. INCREASING THE DIVERSITY OF LOGITS
We assumed that additional diversity in the logits matrix
could potentially improve the performance of the CLIP
model. Enhancing the diversity in this context involves ampli-
fying the larger values within the logits similarity matrix
while diminishing the smaller values. This is realized by
element-wise multiplication of the CLIP logits matrix by a
transforming coefficientsmatrixwith elements between 0 and
one. The design of the transforming coefficients matrix aims
to preserve the larger values in the CLIP logits similarity
matrixwhile pushing the smaller values towards lower values,
approaching zero (Figure 1).
We diversified the logits by introducing two transform-

ing approaches, including sine and sigmoid approaches
(explained in detail later), applied to a customized implemen-
tation of the CLIP model. The two methods were designed
to decrease the similarity of less similar image-text pairs
and keep the similarity of more similar pairs unchanged.
However, due to hardware limitations, we proposed several
adaptations to reduce the computational overhead of running
the original CLIP model.

Firstly, we incorporated a more compact and resource-
efficient text encoder called DistilBERT [33]. DistilBERT is
a compressed variant of the BERT (Bidirectional Encoder
Representations from Transformers) language model [34],
designed with fewer parameters. By leveraging DistilBERT
as our text encoder, we significantly decreased the computa-
tional requirements for both the training and test stages.

Secondly, we employed a pre-trained ResNet50 — a
ResNet [Residual Network] convolutional neural network
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FIGURE 1. Workflow of the CLIP Model, highlighting its key components and the proposed suggestion for improving its performance. The CLIP model
utilizes a dual-encoder architecture to learn joint representations of images and text. Our enhancement focuses on increasing the diversity in the CLIP’s
cosine similarity matrix, resulting in improved performance in tasks such as image/text retrieval and image classification.

(CNN) architecture with 50 layers [27] — image encoder,
a widely adopted technique in various computer vision tasks
[35]. The pre-trained ResNet50model has been trained to rec-
ognize patterns and extract meaningful features from images,
making it well-suited for our adaptation. We mapped images
into the joint embedding space in the following way:

1. Feature Extraction with ResNet-50: The output of
ResNet50 for each image is a 2,048-dimensional feature
vector. These dimensions represent various abstract features
learned by ResNet50 during its training on a large dataset.

2. Linear Projection to a Shared 256-Dimensional Space:
We introduced a projection head to align the image embed-
dings with the joint embedding space and ensure consistent
dimensions across modalities. The initial 2,048-dimensional
image embeddings are linearly projected to a common
256-dimensional space.

3. After the linear projection, the embeddings go through
a GELU (Gaussian Error Linear Unit) activation function.
This non-linear activation function introduces non-linearity
into the representations, enhancing their expressive power
and enabling them to capture more complex relationships.

4. To refine the embeddings and capture intricate patterns
while mitigating overfitting, we applied another linear trans-
formation followed by dropout with a rate of 0.1.

5. Layer normalization is employed to ensure consistent
statistics and make the embeddings more suitable for down-
stream tasks.

6. To preserve information from the original embeddings,
the projected embeddings are added back in a residual
connection-like manner. The primary purpose of a residual
connection is to allow the network to learn and retain impor-
tant information from previous layers while mitigating the
vanishing gradient problem, which can occur in very deep
networks.

This entire process maps the images into the joint embed-
ding space, a 256-dimensional vector space. The choice of
this dimensionality is designed to capture meaningful seman-
tic information in the shared space and align images and text
for cross-modal understanding and various downstream tasks.
TheCLIPmodel is pre-trained on a large dataset withmillions
of images and their textual descriptions. During pretraining,
the model learns to associate images and text in this joint
embedding space. The number of ‘‘classes’’ in this space can
be considered as the number of unique concepts or objects
the model can understand. These classes are not pre-defined
categories but emerge from the training data.

By implementing these adaptations, we generated a modi-
fied implementation of the CLIP base model that addresses
our hardware limitations by reducing computational over-
head. While the accuracy of our adapted model may not
match that of the base model, it still provides a viable solution
that strikes a balance between efficiency and performance.
Hereinafter, by CLIP model, we mean the modified imple-
mentation of the CLIP model, unless stated otherwise.

To increase the diversity of logits by sine approach, first,
we created a new matrix of similarities by mapping the
original logits similarities into four specific amounts of π /2,
π /3, π /4, and π /5, based on the size of the original simi-
larity values (see Figure 2 for an illustrative example). In
detail, the original logits matrix range was divided into four
equal intervals with partition sizes of (max(logits-CLIP) –
min(logits-CLIP)) / 4. logits-CLIP is the logits similarity
matrix obtained using the CLIP model. The logits values
falling in the first intervals were mapped to π /2, the second
interval to π /3, and so on. The dimensions of the new matrix
were the same as the original logits matrix.

The sin(x) function was then applied to the new sim-
ilarity matrix to rescale the values to a range between
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FIGURE 2. Visualization of sine approach using CLIP cosine similarity matrix as a key input. The sine approach proposed in this study increases the
diversity in the CLIP’s cosine similarity matrix, resulting in improved performance in tasks such as image/text retrieval and image classification.

0 and 1 — creating the matrix of transforming coefficients.
Subsequently, the transformation coefficients were applied
element-wise to the original logits similarity matrix, gener-
ating the diversified logits similarity matrix. This helped to
introduce more variability into the logits and improve the
model’s ability to distinguish between similar and dissimilar
image-text pairs. The proposed method is formulated as
follows:

1. Compute the maximum and minimum values:
• Vmax = max(logits)
• Vmin = min(logits)

2. Calculate the partition size:

Vp =
Vmax−Vmin

4
3. Rescale the logits based on the conditions:

Initialize a matrix R with the same size as
logits with all values set to 0:
R = zeros_like(logits)

• R [logits ≥ Vmax − Vp] = π /2
• R[(logits < Vmax − Vp) and (logits ≥ Vmax −

2× Vp)] = π /3

• R[(logits < Vmax − 2× Vp) and (logits ≥ Vmax
− 3× Vp)] = π /4

• R [logits < Vmax − 3× Vp] = π /5
4. R = sin(R)
5. Calculate diversified logits:

Diversified logits = logits× R

The sigmoid approach was applied in two different ver-
sions, namely sigmoid_v1 and sigmoid_v2. In the first ver-
sion, the sigmoid function (f(x) = 1 / (1 + e^(−x))) scales
the logits matrix elements to a range between 0 and 1
(Sig_logits). This is followed by additional scaling and
shifting the values to map them between 0.25 and 0.75
(Scaled_sig = (Sig_logits - 0.5) / 0.5 × 0.25 + 0.5). Finally,
if an element in the Scaled_sig matrix is greater than the
75th percentile of all elements in the Scaled_sig matrix, that
element is set to 1; otherwise, that element remains its original
value (see Figure 3 for an illustrative example). This forms
the matrix of transforming coefficients — which will be
multiplied by the original logits similarity matrix created by
the CLIP model to increase its diversity.
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FIGURE 3. Visualization of Sigmoid approach using CLIP cosine similarity matrix as a key input. The Sigmoid approach proposed in this study increases
the diversity in the CLIP’s cosine similarity matrix, resulting in improved performance in tasks such as image/text retrieval and image classification.

1. Calculate the sigmoid of the logits:

Sig_logits = 1/(1 + e(−logits))

2. Scale the sigmoid output to the range [0.5, 1.0]:

Scaled_sig = (
Siglogits−0.5

0.5
) × 0.25 + 0.75

3. Apply a threshold to set values in the fourth quartile
to 1:

thresholded =


1 if logits > quantile

(logits, 0.75)
Scaled_sig otherwise

4. Calculate diversified logits:

Diversified logits = logits× thresholded

The design of the transforming coefficients matrix ensures
that the larger values in the CLIP logits similarity matrix are
preserved significantly. In comparison, the smaller values are
effectively reduced to values closer to zero — increasing the
diversity.

Overall, the implementation of sigmoid_v2 is similar to
sigmoid_v1; however, in the second step, Sig_logits will be
scaled to a range between 0.5 and 1 instead of 0.25 and 0.75,
and similarly, a 75th percentile threshold will be applied to set
values in the fourth quartile to 1. The aim was to investigate
the role of scaling range in the second step on the final
performance of the text/image retrieval tasks.

We utilized a GPU P100-PCIE (NVIDIA Tesla series)
with a memory capacity of 16 GB GDDR5 equipped with
64 Tensor Cores, and 3,584 CUDA cores (Driver version
470.161.03; CUDA version: 11.4). The experiments were
carried out on the Kaggle platform.

The image encoder (ResNet50) in our analysis is imple-
mented by the PyTorch Image Models library (timm). In
our analysis, the code efficiently processes each image
and encodes it into a fixed-size vector with a dimension-
ality of 2,048, which corresponds to the output channels
of the ResNet50 model. This fixed-size vector is obtained
after passing the image through the nn.AdaptiveAvgPool2d()
layer, ensuring that the encoded image representation is of a
consistent size across different images. The ‘‘resnet50_a1_
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0-14fe96d1.pth’’ model, available on the GitHub reposi-
tory ‘‘rwightman/pytorch-image-models’’, was used in our
model. This file is a PyTorch model checkpoint that contains
pre-trained weights for the ResNet50 architecture with spe-
cific configurations. The configuration of the used ResNet50
image encoder model is presented in SupplementaryMaterial
Table 1.

Similar to its larger counterpart, BERT, DistilBERT (Dis-
tilled Bert) adds two special tokens, CLS and SEP, to the
actual input tokens to mark the start and end of a sentence.
The CLS token, short for ‘‘classification token,’’ is a special
token used in transformer-based models like BERT. To cap-
ture the sentence’s overall meaning (caption), we used the
final representations of the CLS token. This representation,
a vector of size 768, encodes the entire caption and serves
as a fixed-size vector representing the textual content. This
process is akin to how we transformed images into fixed-size
vectors in image analysis. We used the DistilBertModel
Python library, part of the Hugging Face transformers library,
which provides access to various pre-trained transformer-
based models for Natural Language Processing (NLP) tasks.
The configuration of the final DistilBERT text encoder model
is presented in Supplementary Material Table 2.

To improve the model’s feature learning, we used the
GELU activation function, which has proven effective in cap-
turing complex text-image relationships. Moreover, we used
the AdamW optimizer to handle weight decay more effi-
ciently during training. For a comprehensive overview of the
hyperparameter settings, including text width, image width,
embedding dimension, learning rates, batch size, weight
decay, training epochs, temperature, and other critical param-
eters, see Supplementary Material Table 3.

C. BENCHMARK DATASETS
Ten datasets were employed to assess/benchmark the
resilience and versatility of our proposed approaches for
incorporating diversity into the logits similarity matrix within
the CLIP model, spanning three tasks: image classification,
image retrieval, and text retrieval (Table 1). The choice of
these datasets was driven by their diversity in domains, chal-
lenges, and application areas, allowing for a comprehensive
evaluation of our model’s performance.

We employed the following datasets for image classifi-
cation: chest X-ray, MNIST, Food101, RESISC45, FGV-
CAircraft, Flowers102, PatchCamelyon, and Eurostat. For
image retrieval and text retrieval tasks, we used the following
datasets: Flickr30k and a subset of the COCO dataset. Due
to hardware limitations, we reduced the size of the COCO
dataset and specifically utilized the test partition of the COCO
dataset — ensuring a manageable computational load for our
experiments.

We ensured the reliability of our findings by conduct-
ing multiple runs of our model on each benchmark dataset.
Specifically, we ran our model 20 times for each dataset to
obtain a robust estimate of its performance. For the classi-
fication task, we calculated the average Accuracy across the

20 runs, while for the retrieval tasks, we computed the average
Recall. Additionally, we measured the difference between the
average and the standard deviation to estimate the variability
and stability of our models.

In addition, we employed a non-parametric Friedman
test on the classification Accuracy (ACC) metric. This test
aimed to evaluate the significant differences among the var-
ious methods used in our study. A significance level of
α = 0.05 was chosen for the analysis.

D. PERFORMANCE EVALUATION
To ensure a better and fair comparison, we evaluated the base
model’s performance with our adapted models incorporating
the proposed adaptations. We employed specific evaluation
metrics to compare the performance of our adjusted models
with the base model in different tasks.

We used the Accuracy and mean per class metrics for the
classification task, which measures the percentage of cor-
rectly classified instances. Accuracy measures the proportion
of correct predictions over the entire dataset. It is calculated
as follows:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

where theNumber of Correct Predictions represents the count
of instances in which the model’s prediction matches the
expected value, and the Total Number of Predictions is the
total number of examples present in the test set.

For the image retrieval task, we utilized the metrics R@1,
R@5, and R@10. R@k represents the precision at k, which
measures the proportion of relevant images found among the
top k retrieved images. R@k is calculated using the following
equation:

R@k =
Number of Relevant Predictions among Top− k

Total Number of Relevant Items

The Number of Relevant Predictions among Top-k represents
the count of relevant predictions among the top-k predictions
made by the model, and the Total Number of Relevant Items
is the total number of items considered relevant in the dataset.

In our evaluation, we considered the top 1, 5, and
10 retrieved images to assess the effectiveness of our adapted
models in retrieving relevant images.

Similarly, for the text retrieval task, we employed the met-
rics R@1, R@5, and R@10. R@k, in this context, measures
the precision at k, indicating the proportion of relevant texts
found among the top k retrieved texts. We compared the
performance of our adapted models with the base model by
evaluating the precision at the top 1, 5, and 10 retrieved texts.

III. RESULTS
The quantitative analysis of the results reveals important
insights into the performance improvements achieved by the
different algorithms. The mean Accuracy rates, accompanied
by their standard deviations, measure the algorithm’s perfor-
mance stability across multiple runs. The standard deviations
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TABLE 1. Datasets used in this study to evaluate the effectiveness of enhancing the diversity in the cosine similarity matrix of the CLIP model in
image/text retrieval and image classification tasks.

TABLE 2. Evaluating image classification accuracy across benchmark datasets for modified implementation of the CLIP model (shown as ‘clip’) and its
variants with added diversity in similarity matrix. (Average score ± standard deviation, %.)

TABLE 3. Evaluating text and image retrieval accuracy across benchmark datasets for modified implementation of the CLIP model (shown as ‘clip’) and
its variants with added diversity in similarity matrix. (Average Recall ± standard deviation, %.)

in image classification and retrieval tasks provide insights
into the stability and consistency of the algorithms’ perfor-
mance. Additionally, the percentage change in performance
compared to the baseline algorithm can offer a quantified
measure of improvement.

For the image classification datasets, sine consistently
outperformed the other algorithms regarding mean Accu-
racy (Figure 4; Table 2). In particular, it achieved a mean
Accuracy of 96.03% in the MNIST dataset, representing
an improvement of approximately 0.75% compared to the

baseline algorithm (CLIP). The standard deviation for Sig-
moid_v2’s performance in the X-ray dataset was relatively
high at 8.92%, indicating some variability in results across
different runs. However, its superior mean Accuracy sug-
gests that the algorithm’s overall performance was enhanced.
In the text and image retrieval tasks, the sine approach
demonstrated the highest mean retrieval precision across
most metrics (Figures 5 and 6; Table 3). For instance, in the
COCO dataset’s image retrieval task, the sine approach
achieved a Recall@1 of 92.81%, representing a significant
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FIGURE 4. Image classification accuracy on benchmark datasets for the modified implementation of the clip model (referred to as ‘CLIP’) and its variants
with enhanced diversity.

improvement of 44.10% compared to the baseline algorithm
(CLIP; Figure 6). The standard deviations for the sine
approach’s performance were relatively low, indicating con-
sistent and stable results.

Comparatively, Sigmoid_v1 and Sigmoid_v2 demon-
strated improved performance in various retrieval tasks. For
instance, in the text retrieval task for the Flickr30k dataset,
Sigmoid_v2 achieved a Recall@1 of 78.75%, representing an
improvement of approximately 24.27% compared to CLIP.
However, it should be noted that Sigmoid_v2 showed rela-
tively high standard deviations, indicating some variability
in performance across different runs. In contrast, the sine
approach outperformed both Sigmoid_v1 and Sigmoid_v2,
achieving a Recall@1 of 92.30% with a lower standard
deviation.

Overall, the results indicate that applying sine as a diversi-
fied transformation led to significant Accuracy and retrieval
precision (scores) improvements across multiple datasets and
tasks. However, in some cases, the high standard deviations
observed for Sigmoid_v2 suggest potential room for further
optimization and stability enhancement.

The results of the Friedman test for image classification
are presented in Table 4, which provides insights into the
relative performance of the different algorithms. Based on
the rankings obtained, it can be observed that sine achieved

TABLE 4. Average ranks obtained by each method in the friedman test.
The best method (control method) is the sine method with the lowest
ranking value.

the best ranking (the lowest value of ranking), followed
by Sigmoid_v2 and Sigmoid_v1, while CLIP obtained the
worst ranking. The significant difference between the rank-
ings suggests that applying diversified transformation in the
algorithms led to improved Accuracy in the datasets under
consideration. The Friedman statistic, distributed according
to chi-square with 3 degrees of freedom, was 6.45, and the
p-value computed by the Friedman test was 0.091655.

TABLE 5. Post-hoc comparison for alpha = 0.05 (Friedman).
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FIGURE 5. Text and image retrieval accuracy on the flickr30k benchmark dataset for the modified implementation of the clip model (referred to as ‘CLIP’)
and its variants with enhanced diversity in the similarity matrix. a, b, and c, image retrieval accuracies. d, e, and f, text retrieval accuracies.

The first step of the Freidman test confirms significant
differences between the compared methods. After this step,
a post-hoc procedure is used to compare the control method
(the best-rankedmethod) with the othermethods as a pairwise
comparison. The following Table 5 shows the results of Li’s
post-hoc procedure while the sine method is chosen as the
control method. Li’s approach rejects those hypotheses that
have an unadjusted p-value ≤ 0.008082. Therefore, the sine
method significantly outperforms the sigmoid_v1 and CLIP
methods, while there is no significant difference between
the sine and sigmoid_v2 methods. In other words, sine and
sigmoid_v2 statistically perform the same.

IV. DISCUSSION
A. CLIP MODEL WITH DIVERSITY-INDUCING FUNCTIONS
’We observed improvements in the performance metrics for
MNIST, Food101, RESISC45, FGVCAircraft, Flowers102,
and PatchCamelyon, as well as image retrieval and text
retrieval tasks on COCO and Flickr30k datasets, indicating
the efficacy of our method in enhancing the CLIP model’s
capabilities.

The improved results on datasets such as MNIST,
Food101, RESISC45, FGVCAircraft, Flowers102, and
PatchCamelyon can be attributed to the inherent character-
istics of these datasets. MNIST, for instance, consists of
handwritten digit images, which are relatively distinct from
one another. Therefore, applying diversity-inducing functions
helps accentuate the differences between the images, lead-
ing to more accurate matching with the corresponding text
descriptions. Similarly, the Food101 dataset includes images
of different types of food, which often possess unique visual
features. By reducing the similarities among visually differ-
ent food items, our approach facilitates better discrimination
and improves the overall performance of this dataset.

The RESISC45 dataset, which contains images of vari-
ous land cover categories, and the FGVCAircraft dataset,
comprising images of different aircraft models, also ben-
efit from our diversity-inducing functions. These datasets
exhibit significant visual dissimilarities between their respec-
tive classes. By reducing the impact of shared visual features
within a class, our method improves the discrimination capa-
bility of the CLIP model, leading to enhanced performance.
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FIGURE 6. Text and image retrieval accuracy on the coco benchmark dataset for the modified implementation of the clip model (referred to as ‘CLIP’) and
its variants with enhanced diversity in the similarity matrix. a, b, and c, image retrieval accuracies. d, e, and f, text retrieval accuracies.

Moreover, the Flowers102 dataset and PatchCamelyon
dataset, both consisting of distinct categories of flowers and
histopathology images, respectively, demonstrate improved
results due to the presence of visually diverse classes. The
diversity-inducing functions aid in capturing the subtle differ-
ences between these visually intricate classes, thus yielding
more accurate matching between the images and text.

We observed improved performance in image retrieval
and text retrieval tasks on the COCO dataset and Flickr30k
dataset. These datasets contain many images with asso-
ciated captions, making them suitable for evaluating the
effectiveness of our diversity-inducing approach in multi-
modal retrieval tasks. By incorporating the diversity-inducing
functions into the CLIP model, we were able to enhance
the discriminative power of the model in retrieving relevant
images given textual queries and vice versa. This improve-
ment suggests our approach can have practical implications
in real-world applications such as image search engines and
image captioning systems.

However, it is noteworthy that our approach did not
yield comparable improvements on the EuroSAT dataset.

The EuroSAT dataset comprises satellite images of differ-
ent land cover types, which might exhibit similarities in
their visual characteristics, such as color and texture. These
similarities may hinder the effectiveness of the diversity-
inducing functions, as they tend to reduce the differences
among visually similar images. Further investigation is
required to understand the specific challenges associated with
the EuroSAT dataset and explore alternative techniques to
improve performance.

Up to this point, our evaluation has encompassed an array
of models, including the modified implementation of the
CLIP model, as well as its various variants with added diver-
sity in similarity matrix. We also compare these models’
performance against other existing models, as mentioned in
the introduction and literature review. It’s worth emphasiz-
ing that these models come with their unique assumptions,
simplifications, encoding-decoding approaches, and compu-
tational resources. Additionally, they may employ distinct
evaluation schemes. However, by undertaking this compar-
ative approach, we gain a better understanding of how our
models stack up against established ones.
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TABLE 6. Evaluating text and image retrieval accuracy: modified implementation of the clip model (shown as ‘clip-modified’) and its variants with added
diversity in similarity matrix, original clip model, and other models.

Table 6 presents the results of evaluating various models
(including other existing models in the literature) on text
retrieval and image retrieval tasks for two datasets: Flickr30k
andMSCOCO.We have conducted a comparison of our work
with several other models: ALIGN [17], FILIP [25], CoCa
[21], and the original CLIP model. To analyze and discuss
the performance of ‘‘CLIP-Modified’’ (the CLIP version used
here) in comparison to other models, we focus on the Recall
at different levels (R@1, R@5, and R@10) for both tasks.

CLIP-Modified achieves relatively lower performance
than other models, with R@1 values of 54.5% and 48.0%
on Flickr30k and MSCOCO text retrieval, respectively. The
performance gap becomesmore evident at higher recall levels
(R@5 and R@10), with CLIP-Modified consistently per-
forming worse than other models across both datasets.

CLIP-Modified also underperforms on the image retrieval
task, achieving R@1 values of 52.3% and 48.7% on Flickr30k
and MSCOCO, respectively. It continues to exhibit lower
performance at higher recall levels (R@5 and R@10) when
compared to other models. However, after introducing diver-
sity into the models, there has been a clear and significant
improvement in their performance. These improvements have
placed the models’ accuracy within a range comparable to
previous models. In some instances, they have even surpassed
the accuracy of the original CLIP model. These enhance-
ments indicate that increasing diversity in the similarity
matrix is a successful approach to improve the performance
of ‘‘CLIPModified’’ in text and image retrieval tasks, making
it more effective in finding the most relevant results for given
queries.

B. LIMITATIONS AND FUTURE RESEARCH
RECOMMENDATIONS
Due to the constraints of our hardware resources, we had to
make certain modifications to the base model. For instance,
we used a pre-trained ResNet50 model as an image encoder
and DistilBERT as a text encoder. While these modifications
allowed us to proceed with our experiments, it is possible
that alternative architectures or models could yield different
results. Exploring a wider range of model configurations
could provide valuable insights.

Several avenues for future work can be explored based
on the results and discussion presented in this paper. Firstly,

investigating the reasons behind the limited improvement
observed on the EuroSAT dataset can provide insights into
the challenges associatedwith visually similar images. Devel-
oping alternative diversity-inducing techniques tailored to
such datasets might help address this limitation and further
improve performance.

To add diversity to our similarity matrix, we employed
simple transformation functions. These functions were
designed to introduce diversity based on our understanding
of the data, but there is room for improvement. Further
research could focus on developing more sophisticated and
data-specific diversity functions, which might lead to even
better performance and richer representations. The choice of
diversity-inducing functions can influence the overall perfor-
mance, and further research is needed to identify the most
effective functions for different dataset characteristics.

For example, the current study employs a 4-level quanti-
zation for Scaled_sig matrix. Further research should investi-
gate the implications of using higher quantization levels, such
as 6 or 8, on model accuracy and computational efficiency. In
addition, exploring non-linear quantization techniques may
potentially yield more accurate or efficient models. Tech-
niques like logarithmic scaling should be evaluated.

Furthermore, it would be valuable to investigate the
generalizability/transferability of our approach to other
multi-modal models beyond CLIP. Testing the effectiveness
of diversity-inducing techniques on models like VSE++

[36], Unicoder [37], or LXMERT (Language-Enabled Multi-
modal Pretraining (see, e.g., Liu et al. [38]) could provide
insights into the broader applicability and robustness of these
techniques across different architectures.

Conducting a comprehensive analysis of the computational
cost associated with the diversity-inducing functions and
their impact on inference time can help evaluate the
trade-off between performance gains and computational
efficiency. This analysis can inform the practical deploy-
ment of the proposed approach in resource-constrained
environments.

Lastly, exploring the transferability of the diversity-
inducing techniques to other domains or datasets with unique
characteristics, such as medical imaging or remote sensing,
holds promise for expanding the applications of multi-modal
models.
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V. CONCLUSION
In this research paper, we explored an approach to improve
the performance of the CLIP model by introducing more
diversity into the matrix of similarity values, referred to as
logits. Upon evaluation, we identified the need for increased
diversity in the logits matrix to enhance the CLIP model
approach. We integrated two functions, sine (triangular) and
sigmoid(with two versions), into a modified CLIP model. By
incorporating these functions, we introduced variations in the
logits, which resulted in improved performance. This modifi-
cation allows ourmodel to capture a broader range of relation-
ships and nuances between textual and visual representations.
Through experimentation and analysis, we demonstrated the
effectiveness of our approach in achieving enhanced perfor-
mance metrics. sine consistently outperformed other algo-
rithms in image classification, with a mean Accuracy of
96.03% in the MNIST dataset, representing an improvement
of approximately 0.75% compared to the baseline algorithm.
Sigmoid_v2 had a relatively high standard deviation in the
X-ray dataset, indicating some variability in results. In text
and image retrieval tasks, the sine approach demonstrated
the highest mean retrieval precision, particularly in the
COCO dataset’s image retrieval task, achieving a Recall@1
of 92.81%, a significant improvement of 44.10% compared
to the baseline algorithm. The standard deviations for the
sine approach’s performance were relatively low, indicating
consistent and stable results. Our findings highlight the sig-
nificance of incorporating diverse functions into the model’s
architecture to unlock its full potential. The insights gained
from this study pave the way for further advancements in
multi-modal understanding and its applications across differ-
ent domains.

ACKNOWLEDGMENT
The authors would like to acknowledge the valuable support
and resources provided by the Norwegian Institute for Air
Research (NILU) in facilitating and conducting the research
presented in this paper. Additionally, they are grateful for the
financial support received from various sources that made this
research possible.

REFERENCES
[1] A. Latif, ‘‘Content-based image retrieval and feature extraction: A

comprehensive review,’’ Math. Problems Eng., vol. 2019, Aug. 2019,
Art. no. 9658350.

[2] N. K. Rout, M. Atulkar, and M. K. Ahirwal, ‘‘A review on content-
based image retrieval system: Present trends and future challenges,’’ Int.
J. Comput. Vis. Robot., vol. 11, no. 5, pp. 461–485, 2021.

[3] J. Liu, X. Chu, Y. Wang, and M. Wang, ‘‘Deep text retrieval mod-
els based on DNN, CNN, RNN and transformer: A review,’’ in Proc.
IEEE 8th Int. Conf. Cloud Comput. Intell. Syst. (CCIS), Nov. 2022,
pp. 391–400.

[4] W. Rawat and Z. Wang, ‘‘Deep convolutional neural networks for image
classification: A comprehensive review,’’ Neural Comput., vol. 29, no. 9,
pp. 2352–2449, Sep. 2017.

[5] J. Liu, C. Xu, and H. Lu, ‘‘Cross-media retrieval: State-of-the-art and
open issues,’’ Int. J. Multimedia Intell. Secur., vol. 1, no. 1, pp. 33–52,
2010.

[6] M. Cao, S. Li, J. Li, L. Nie, and M. Zhang, ‘‘Image-text retrieval: A survey
on recent research and development,’’ 2022, arXiv:2203.14713.

[7] J. Chen, L. Zhang, C. Bai, and K. Kpalma, ‘‘Review of recent deep learning
based methods for image-text retrieval,’’ in Proc. IEEE Conf. Multimedia
Inf. Process. Retr. (MIPR), Aug. 2020, pp. 167–172.

[8] L. Wang, Y. Li, and S. Lazebnik, ‘‘Learning deep structure-preserving
image-text embeddings,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2016, pp. 5005–5013.

[9] K. Chen, C. B. Choy, M. Savva, A. X. Chang, T. Funkhouser, and
S. Savarese, ‘‘Text2Shape: Generating shapes from natural language
by learning joint embeddings,’’ in Proc. Comput. Vis. (ACCV) 14th
Asian Conf. Comput. Vis. Perth, SCT, Australia: Springer, Dec. 2018,
pp. 100–116.

[10] Y. Zhang, H. Jiang, Y. Miura, C. D. Manning, and C. P. Langlotz, ‘‘Con-
trastive learning of medical visual representations from paired images and
text,’’ in Proc. Mach. Learn. Healthcare Conf., 2022, pp. 1–16.

[11] A. Frome, G. S. Corrado, and J. Shlens, ‘‘A deep visual-semantic embed-
ding model,’’ in Proc. Adv. Neural Inf. Process. Syst., 2013, pp. 1–6.

[12] K.-H. Lee, X. Chen, G. Hua, H. Hu, and X. He, ‘‘Stacked cross attention
for image-text matching,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 1–9.

[13] L. Qu, M. Liu, J. Wu, Z. Gao, and L. Nie, ‘‘Dynamic modality interaction
modeling for image-text retrieval,’’ in Proc. 44th Int. ACM SIGIR Conf.
Res. Develop. Inf. Retr., Jul. 2021, pp. 1104–1113.

[14] J. Lu, D. Batra, D. Parikh, and S. Lee, ‘‘ViLBERT: Pretraining task-
agnostic visiolinguistic representations for vision-and-language tasks,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 1–9.

[15] A. Radford, ‘‘Learning transferable visual models from natural language
supervision,’’ in Proc. PMLR, 2021, pp. 8748–8763.

[16] L. Bossard, M. Guillaumin, and L. Van Gool, ‘‘Food-101—Mining
discriminative components with random forests,’’ in Proc. Comput.
Vis.-ECCV 13th Eur. Conf., Zurich, Switzerland, vol. 13, Sep. 2014,
pp. 446–461.

[17] C. Jia, ‘‘Scaling up visual and vision-language representation learning
with noisy text supervision,’’ in Proc. Int. Conf. Mach. Learn., 2021,
pp. 4904–4916.

[18] C. Saharia, ‘‘Photorealistic text-to-image diffusion models with deep lan-
guage understanding,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 35,
2022, pp. 36479–36494.

[19] N. Mu, A. Kirillov, D. Wagner, and S. Xie, ‘‘Slip: Self-supervision meets
language-image pre-training,’’ in Proc. Comput. Vis. ECCV 17th Eur. Conf.
Tel Aviv, Israel: Springer, Oct. 2022, pp. 529–544.

[20] X. Zhai, X. Wang, B. Mustafa, A. Steiner, D. Keysers, A. Kolesnikov,
and L. Beyer, ‘‘LiT: Zero-shot transfer with locked-image text tuning,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 18123–18133.

[21] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu,
‘‘CoCa: Contrastive captioners are image-text foundation models,’’ 2022,
arXiv:2205.01917.

[22] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, ‘‘Conditional prompt learning for
vision-language models,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jul. 2022, pp. 16816–16825.

[23] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, ‘‘Learning to prompt for vision-
language models,’’ Int. J. Comput. Vis., vol. 130, no. 9, pp. 2337–2348,
Sep. 2022.

[24] H. Pham, ‘‘Combined scaling for open-vocabulary image classification,’’
2021, arXiv:2111.10050.

[25] L. Yao, R. Huang, L. Hou, G. Lu, M. Niu, H. Xu, X. Liang, Z. Li, X. Jiang,
and C. Xu, ‘‘FILIP: Fine-grained interactive language-image pre-training,’’
2021, arXiv:2111.07783.

[26] K. Sohn, ‘‘Improved deep metric learning with multi-class N-pair loss
objective,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016, pp. 1–9.

[27] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[28] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, ‘‘Bag
of tricks for image classification with convolutional neural networks,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Sep. 2019,
pp. 558–567.

[29] R. Zhang, ‘‘Making convolutional networks shift-invariant again,’’ in Proc.
Int. Conf. Mach. Learn., 2019, pp. 7324–7334.

[30] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16×16 words: Trans-
formers for image recognition at scale,’’ 2020, arXiv:2010.11929.

VOLUME 11, 2023 123221



M. Mohammadi et al.: Image-Text Connection: Exploring the Expansion

[31] A. Vaswani, ‘‘Attention is all you need,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 30, 2017, pp. 1–11.

[32] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
‘‘Language models are unsupervised multitask learners,’’ OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[33] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, ‘‘DistilBERT, a dis-
tilled version of BERT: Smaller, faster, cheaper and lighter,’’ 2019,
arXiv:1910.01108.

[34] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[35] Y. Chu, X. Yue, L. Yu, M. Sergei, and Z. Wang, ‘‘Automatic image
captioning based on ResNet50 and LSTM with soft attention,’’ Wireless
Commun. Mobile Comput., vol. 2020, pp. 1–7, Oct. 2020.

[36] F. Faghri, D. J. Fleet, J. Ryan Kiros, and S. Fidler, ‘‘VSE++:
Improving visual-semantic embeddings with hard negatives,’’ 2017,
arXiv:1707.05612.

[37] H. Huang, Y. Liang, N. Duan, M. Gong, L. Shou, D. Jiang, and M. Zhou,
‘‘Unicoder: A universal language encoder by pre-training with multiple
cross-lingual tasks,’’ 2019, arXiv:1909.00964.

[38] T. Liu, Z. Wu, W. Xiong, J. Chen, and Y.-G. Jiang, ‘‘Unified multimodal
pre-training and prompt-based tuning for vision-language understanding
and generation,’’ 2021, arXiv:2112.05587.

[39] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Jul. 1998.

[40] L. Bossard, M. Guillaumin, and L. Van Gool, Food-101-Mining Discrim-
inative Components With Random Forests. Cham, Switzerland: Springer,
2014, pp. 446–461.

[41] G. Cheng, J. Han, and X. Lu, ‘‘Remote sensing image scene classifi-
cation: Benchmark and state of the art,’’ Proc. IEEE, vol. 105, no. 10,
pp. 1865–1883, Oct. 2017.

[42] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, ‘‘Fine-grained
visual classification of aircraft,’’ 2013, arXiv:1306.5151.

[43] M.-E. Nilsback and A. Zisserman, ‘‘Automated flower classification over
a large number of classes,’’ in Proc. 6th Indian Conf. Comput. Vis., Graph.
Image Process., Dec. 2008, pp. 1–8.

[44] B. S. Veeling, J. Linmans, J.Winkens, T. Cohen, andM.Welling, ‘‘Rotation
equivariant CNNs for digital pathology,’’ in Medical Image Computing
and Computer Assisted Intervention-MICCAI. Granada, Spain: Springer,
Sep. 2018, pp. 210–218.

[45] P. Helber, B. Bischke, A. Dengel, and D. Borth, ‘‘EuroSAT: A novel dataset
and deep learning benchmark for land use and land cover classification,’’
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 7,
pp. 2217–2226, Jul. 2019.

[46] D. Kermany, K. Zhang, and M. Goldbaum, ‘‘Labeled optical coherence
tomography (OCT) and chest X-ray images for classification,’’ Mendeley
Data, vol. 2, no. 2, p. 651, 2018.

[47] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, ‘‘From image descrip-
tions to visual denotations: New similarity metrics for semantic infer-
ence over event descriptions,’’ Trans. Assoc. Comput. Linguistics, vol. 2,
pp. 67–78, Dec. 2014.

[48] T.-Y. Lin, ‘‘Microsoft COCO: Common objects in context,’’ in Proc.
Comput. Vis. ECCV 13th Eur. Conf., Zurich, Switzerland, Sep. 2014,
pp. 740–755.

MAHSA MOHAMMADI received the bachelor’s
degree in computer software engineering from
Shiraz University, and the master’s degree in
artificial intelligence from the Shahid Bahonar
University of Kerman. Her academic background
equipped her with knowledge and skills in areas,
such as natural language processing (NLP) and
machine learning. She is currently an accom-
plished Software Developer with a wealth of expe-
rience in the field. She is also with Protector For-

sikring ASA, Oslo, Norway, responsible for developing software solutions
using technologies, such as Hibernate, Spring Boot, Java, and JavaScript.

MAHDI EFTEKHARI was born in Kerman, Iran,
in 1978. He received the B.Sc. degree in com-
puter engineering and theM.Sc. and Ph.D. degrees
in artificial intelligence from the Department of
Computer Science and Engineering, Shiraz Uni-
versity, Shiraz, Iran, in September 2001, 2004, and
2008, respectively. He has been a Faculty Member
with the Shahid Bahonar University of Kerman,
Kerman, since 2008. He is currently a Full Profes-
sor with the Department of Computer Engineering.

He is the author and coauthor of about 140 papers in cited journals and
conferences. His research interests include deep learning, machine learning,
fuzzy methods and systems, and the application of intelligent methods in
bioinformatics.

AMIRHOSSEIN HASSANI received the Ph.D.
degree. He is currently a Researcher with The Cli-
mate and Environmental Research Institute NILU.
With a background in petroleum engineering and
a strong passion for environmental sciences, his
research focuses on developing data-driven tools
to inform policymaking and enhance the resilience
of societies and ecosystems to future environmen-
tal challenges. His expertise lies in the application
of Earth system science data to address current

and projected social, economic, and environmental challenges. He is also
committed to leveraging the power of machine learning applications beyond
environmental domains.

123222 VOLUME 11, 2023


