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ABSTRACT: Conventional monitoring systems for air quality,
such as reference stations, provide reliable pollution data in urban
settings but only at relatively low spatial density. This study
explores the potential of low-cost sensor systems (LCSs) deployed
at homes of residents to enhance the monitoring of urban air
pollution caused by residential wood burning. We established a
network of 28 Airly (Airly-GSM-1, SP. Z o.o., Poland) LCSs in
Kristiansand, Norway, over two winters (2021−2022). To assess
performance, a gravimetric Kleinfiltergeraẗ measured the fine
particle mass concentration (PM2.5) in the garden of one
participant’s house for 4 weeks. Results showed a sensor-to-
reference correlation equal to 0.86 for raw PM2.5 measurements at
daily resolution (bias/RMSE: 9.45/11.65 μg m−3). High-resolution air quality maps at a 100 m resolution were produced by
combining the output of an air quality model (uEMEP) using data assimilation techniques with the network data that were corrected
and calibrated by using a proposed five-step network data processing scheme. Leave-one-out cross-validation demonstrated that data
assimilation reduced the model’s RMSE, MAE, and bias by 44−56, 38−48, and 41−52%, respectively.
KEYWORDS: air pollution, uEMEP air quality model, PM2.5 spatiotemporal variation, data assimilation, gravimetric method,
Airly sensor, calibration

1. INTRODUCTION
Residential wood combustion/burning (RWC) in stoves, small
boilers, and fireplaces are widely used for heating and for
creating a cozy atmosphere in residences in the continental
Nordic countries: Denmark, Finland, Norway, and Sweden;1 it
is also common in other regions in Europe2 and worldwide.3

Due to the incomplete combustion conditions and lack of
emission control devices, RWC is also a critical emission
source of air pollution, mainly fine particulate matter (PM),4

which contains substances such as polycyclic aromatic
hydrocarbons (PAHs) known to be linked to adverse health
effects.5 Sigsgaard, Forsberg, Annesi-Maesano, Blomberg,
Bølling, Boman, Bønløkke, Brauer, Bruce, and Heŕoux et al.6

present evidence that emissions from biomass, including
residential solid fuels (RSFs), such as wood crop residue,
animal waste, coal, and charcoal, and combustion products
negatively affect respiratory and, possibly, cardiovascular health
in Europe. The current impact of biomass smoke, primarily
from wood, on Europe’s premature mortality is estimated at
least 40,000 deaths per year.6 Given this context, it is
concerning that RWC is increasingly perceived as a clean
and inexpensive fuel when sourced locally in response to
climate change policies, fuel pricing, and poverty, thus posing
new health challenges.

Traditional methods for evaluating regional air pollutant
trends, such as regulatory reference instruments, struggle to
effectively account for the spatial and temporal variations of
RWC. This is due to the large number of households using
RWC appliances and the lack of precise information on
appliance locations, stove technologies, and usage patterns.
Additionally, the limited coverage of reference stations and the
reliance of air quality models on accurate input data,
meteorological conditions, boundary conditions, and emissions
further hinder their ability to capture the extensive areas
affected by RWC pollution.

The latest developments in low-cost air pollution
technologies can offer further insight into nearby sources,
assist in placing regulatory monitoring stations, and enhance
our understanding of the finer-scale spatiotemporal fluctua-
tions of ambient air pollutants and their corresponding health
impacts.7 The cost-effectiveness of low-cost air quality sensors
(LCSs) has led to an easier way of collecting data at higher
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spatial and temporal resolutions (throughout this paper, by a
sensor, we mean a sensor system or sensor kit since they
usually include a collection of sensors). LCSs have been used
to supplement ambient air monitoring8 and improve the
understanding of air quality and health in urban areas.9

Here, we assess the use of Airly LCS technology against
reference gravimetric Kleinfiltergeraẗ methods (KFG) for
analyzing the spatiotemporal variation of PM in Kristiansand,
Norway, during winter. Previous studies conducted by Im,
Christensen, Nielsen, Sand, Makkonen, Geels, Anderson,
Kukkonen, Lopez-Aparicio, and Brandt,10 Grythe, Lopez-
Aparicio, Vogt, Vo Thanh, Hak, Halse, Hamer, and Sousa
Santos,11 Kukkonen, Loṕez-Aparicio, Segersson, Geels, Kan-
gas, Kauhaniemi, Maragkidou, Jensen, Assmuth, and Karppi-
nen,12 and Lopez-Aparicio and Grythe13 have indicated that
RWC accounts for 50−80% of house heating PM2.5 emissions
in the Nordic area (except for Iceland). Additionally, in
circumpolar regions, the RWC stands out as a prominent
contributor to winter carbonaceous aerosol emissions.14 This
study focuses on air pollution caused by RWC, an important
environmental issue, and the use of PM LCSs at citizens’
houses to complement official monitoring stations and
generate high-resolution air quality maps. While the use of
PM LCSs for monitoring air quality is not new, the use of a
commercial LCS, i.e., the Airly sensor system, has not been
extensively studied in this context.

In addition to Kristiansand as the primary research location,
data from additional sites/air quality stations in Oslo,
Gothenburg, and Lappeenranta were utilized to evaluate
Airly LCSs. The research in the areas mentioned above is
part of the NordicPATH project�Nordic Participatory,
Healthy, and People-Centered Cities (https://nordicpath.
nilu.no/, accessed May 2023). The paper also proposes a
data processing scheme for network data quality assurance. It
assimilates the PM2.5 data from the sensor network with the

uEMEP model (see Supporting Information SI.1 for uEMEP
details), providing better estimates of the spatial variation of air
pollution at regional scales.

2. METHODS
2.1. Airly LCS and Sensor Network Description. The

Airly-GSM-1 sensor system (or sensor kit/unit) (https://airly.
org/en/, accessed in Nov 2022) was selected for this research.
This sensor kit is a commercial platform that provides
estimates of PM mass concentrations in the fractions of
PM1, PM2.5, and PM10 as output. The Airly PM LCS integrates
the Plantower PMS5003 sensor (https://www.plantower.com/
en/products_33/74.html, accessed in Nov 2022) with a
scattering angle of 90° (see Supporting Information SI.2 for
further details).

The Airly sensor network in Kristiansand has 30 Airly LCSs,
with 28 of them located in the central area of the municipality,
encompassing three main regions: Grim, Lund, and
Kvadraturen (Figure 1). The sensor network was fully
operational from Dec 2020 (17 LCSs by 11th Dec 2020).
However, some sensors were added a posteriori: 5 LCSs in Jan
2021, 4 LCSs in Feb 2021, 3 sensors in June 2021, and one
sensor in Jan 2022 (Supporting Table 1). Data coverage by
individual LCSs is represented in Supporting Figure 1.

Sensors were installed near local RWC sources in residential
areas with less traffic, typically where the RWC for heating is
more prevalent. Due to proximity to the emission sources, the
PM2.5 levels measured by LCSs during winters are believed to
be dominated by RWC PM2.5, which contributes to ≈67.9% of
total annual emissions of PM2.5 in Kristiansand municipality
(h t tp s : //www.mi l j od i r ek to r a t e t . no/g loba l a s s e t s/
publikasjoner/m1494/m1494.pdf).

In Kristiansand, RWC mainly occurs in detached and
semidetached households, more present in the regions of Lund
and Grim. However, some block buildings in the center (i.e.,

Figure 1. Location of Airly low-cost particulate matter sensors, reference monitoring stations, and inductive loop traffic counters, Kristiansand,
Norway. Different colors for low-cost sensors represent the district (neighborhood) in which each sensor is located.
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Kvadraturen) might also have wood stoves. We hypothesized
that Grim would have high levels of air pollution in winter due
to the type of households (detached) and the neighborhood’s
topography, where the houses are located in a small valley and
episodes with thermal inversions might reduce pollution
dispersion. Following that hypothesis, we decided to have a
dense network of LCSs in Grim with eight sensors. The
neighborhood of Lund, especially the southern region, is more
open, and dispersion might be favored by the presence of sea
wind, resulting in lower air pollution levels.15

Kristiansand municipality has two reference air quality
stations monitoring PM2.5 and PM10 (Figure 1): (1)
Bjørndalssletta (traffic station) and (2) Stener Heyerdahl
(background station). These stations are instrumented with
Grimm EDM180 optical dust monitor devices, measuring
PM2.5 and PM10 at an hourly resolution. The average distance
of the LCSs to Bjørndalssletta and Stener Heyerdahl reference
stations was 2226 and 1271 m, respectively.

2.2. Data Uncertainty against the Reference Method.
To evaluate the sensor kits, we deployed the gravimetrical PM
reference method�Kleinfiltergeraẗ LVS3 and MVS6 (KFG,
https://www.leckel.de/; see Supporting Information SI.3 for
further details) in the backyard of one of the households in
Kristiansand that also had an Airly LCS installed (ID 124).
The household belongs to the Grim neighborhood, where
eight sensor kits were deployed a short distance from each
other (with an average sensor-to-sensor distance of 391.19 m).

The KFG device collected PM2.5 mass concentration data
during two periods of two consecutive weeks in 2021-01-21−
2021-02-03 and 2021-02-17−2021-03-02. The daily averaged
PM2.5 mass concentrations of 28 days were compared to the
sensor data from the sensor installed at the same household
(ID 124) and with the average of the five LCSs (IDs: 85, 122,
124, 126, and 130) installed at the time in the vicinity to assess
the accuracy of the sensor network.

We employed widely used statistical measures, including the
c o e ffi c i e n t o f d e t e r m i n a t i o n (

= ( )R y y y y1 ( ) / ( )i i i i i i
2 2 2 ; yi is the reference

value, yi is the sensor measurement, and yi is the mean
r e f e r e n c e v a l u e ) , m e a n a b s o l u t e e r r o r (

= | |( )y y nMAE /i i i , n is the number of observations),

root-mean-square error ( = y y nRMSE ( ) /i i i
2 ), and

mean bias ( = y y nMB ( )/i i i ) to evaluate the performance
of the LCSs against the reference KFG instrument.

2.3. Network Data Quality Assurance. We retrieved
data from 28 LCSs (Figure 1) from 17 Nov 2020 until 04 Sep
2022 from all three neighborhoods of Kristiansand. Sensor
data coverage during that period is represented in Supporting
Figure 1. We proposed a five-step scheme of data processing to
ensure network data quality. In contrast to the data screening
methodologies proposed by Kelly, Xing, Sayahi, Mitchell,
Becnel, Gaillardon, Meyer, and Whitaker16 or Lu, Giuliano,
and Habre,17 our data processing scheme offers the advantage
of being applicable even in situations where there are no two
sensors available per node. In the first step, (1) we removed
the unwanted data from relocated LCSs (here, LCS IDs 125
and 126). These sensors were relocated during the analysis
period, and postrelocated data were irrelevant to our region of
interest. In the next step, (2) if the data coverage of a sensor
for a specific month was less than 365 h (namely, 50% of the

month), we removed that sensor’s whole month’s data. The
size of data records was reduced from 342,947 to 337,179
(1.68%) during this step. In the third step, (3) we calculated
Pearson’s linear correlation (r) between each sensor’s hourly
PM measurements and the hourly average of all sensors’
measurements within a month during the nighttime hours
(00:00−4:59); if the computed r was ≤0.7, we removed the
data of the sensor during that month. We lost 12.89% of sensor
data during this step, as well.

The choice of nighttime hours is based on the fact that fewer
anthropogenic activities may occur that can contribute to
fluctuations in PM2.5 concentrations. For example, less RWC
may happen, traffic may be lighter during the night hours, and
industrial activities may be reduced. As a result, PM2.5
concentrations during nighttime hours may be more similar
to the background levels. Supporting Figure 2 represents the
diurnal r between Stener Heyerdahl and Bjørndalssletta. It is
based on historical PM2.5 data starting in 2020. During night
hours between 00:00 and 4:59, we observe the highest r
between the measurements from the two reference stations.
This indicates that during these hours fewer activities
contribute to local PM2.5 emissions, resulting in a higher
spatial consistency and similarity in observed PM2.5 to
background values.

Other studies analyzing environmental sensor network data
have adopted the practice of examining the r between
individual sensors and the sensor network. For example, Fu,
Tang, Grieneisen, Yang, Yang, Wu, Wang, and Zhan18

removed the sites with substantially lower rs than any other
site, where the threshold of the r was set to be lower than μ-3σ
(μ: mean, σ: standard deviation) of all of the rs between sites.
In our case, the mean and standard deviation of the rs of all
sensors during the analysis period (2020-12-01 00:00:00−
2022-08-31 23:00:00) were 0.74 and 0.02, respectively.
Additionally, in urban settings, PM2.5 concentrations have
been shown by some studies to be spatially correlated.19 Using
rs between sites is a popular method of determining spatial
uniformity in urban areas.20 A summary of more studies on
PM2.5 spatial correlation (using reference measurements) is
provided in Supporting Table 2. While there may be a high
correlation between concentrations at pairs of sites, it is
important to emphasize that their actual concentrations are not
necessarily identical.

A survey on sensor calibration in air pollution monitoring
deployments by Maag, Zhou, and Thiele21 categorizes this
approach as the “Blind Network Calibration” approach (see
Table 2 in their paper for the list of studies that used blind
calibration, tailored explicitly for air quality sensors). It is
assumed that neighboring sensors measure almost identical
values or at least are correlated with each other21,22 as
environmental data collected from widely dispersed sensors
have similar temporal and spatial characteristics.23,24

Through a series of 7 week sensor-to-sensor intercomparison
tests for Airly LCSs, Vogt, Schneider, Castell, and Hamer25

showed that different Airly LCSs are well correlated among
them, with rs between 0.89 and 0.96. To evaluate the
consistency in measurements of Airly LCSs, we conducted a
sensor-to-sensor intercomparison test in Oslo. The intercom-
parison consisted of deploying 16 sensors at a single location,
and it allowed us to evaluate the consistency and r between
different sensors’ measurements. Supporting Figure 3 illus-
trates the findings of the intercomparison, showcasing the r
between the sensor measurements in terms of measuring
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PM2.5. The intercomparison test is conducted in Kirkeveien,
Oslo, with meteoclimatic conditions similar to Kristiansand for
nearly 20 days (2023-04-12 until 2023-05-01). However, those
are not the sensors used in Kristiansand. Fifteen sensors
showed a sensor-to-sensor r above 0.99, except sensor ID 528,
which showed a relatively lower performance; even for that
sensor, sensor-to-sensor rs were above 0.78.

Based on the above sensor-to-sensor variability�although
the sensors in Kristiansand were from a different batch, and the
comparison results against the KFG instrument (discussed in
detail in Section 3)�we corrected all of the Airly sensors’
PM2.5 measurements in Kristiansand in the fourth step by
multiplying the sensor factory-calibrated outputs by 0.49 as a
correction factor (the sensor gain calculated from sensor ID
124 colocated with the KFG). Then, Stener Heyerdahl

(background station) was used as a reference for adjusting
the weekly bias (offset) of the sensor PM2.5 measurements.

In the fifth step, an assessment was conducted to determine
the potential sensor drift. Following the filtering and
calibration steps, we used singular spectrum analysis (SSA)26

to identify the long-term trend, the seasonal or oscillatory
trend (or trends), and the remainder of each sensor nightly
bias (00:00−04:59) from the urban background Stener
Heyerdahl reference monitoring station from the beginning
of the first winter to the end of the second winter. This was
performed only for the sensors with at least 90 days of data in a
row to establish an LCS baseline (26 sensors). We fitted a
linear regression model to the measurements of individual
sensors and assessed the slope coefficient’s p-value. If it was
>0.05, we considered the sensor as nondrifted. For none of the

Figure 2. Comparison of 24 h averaged raw PM2.5 measurements of sensors with the corresponding gravimetric reference method (Kleinfiltergeraẗ)
measurements for two periods of 14 days�Jan 21, 2021 until Feb 03, 2021 and Feb 17, 2021 until March 02, 2021 (Kristiansand, Norway). (a−e)
Individual sensors located in the Grim. Only sensor ID 124 was colocated in the garden of one of the households with KFG instrument; (f) mean
of 24 h averaged measurements of all sensors located in the Grim neighborhood (sensors 85, 122, 124, 126, and 130). We have used iteratively
reweighted least-squares fitting (robust linear regression) using the “bisquare” (“biweight”) weight function with the default tuning constant of
4.685 to reduce the outlier effect. For further details, the readers are referred to the MATLAB “fitlm” documentation (https://uk.mathworks.com/
help/stats/fitlm.html, retrieved in Dec 2022). r: Pearson correlation coefficient. R2: coefficient of determination. RMSE: root-mean-square error.
MAE: mean absolute error. Sensor-ref r, RMSE, and MAE values shown in the legends are calculated based on factory-calibrated sensor outputs.
The uncertainty of the measurements corrected by the correction approach is represented in the legend title for each panel. Measurement
uncertainties are calculated following the CEN report “Air Quality�Approach to Uncertainty Estimation for Ambient Air Reference Measurement
Methods” (CR 14377:2002E; https://standards.iteh.ai/catalog/standards/cen/f4b43420-4322-4bfa-abe5-642b7d47ff8a/cr-14377-2002). For each
sensor, a normal probability distribution is fitted to the deviation of the corrected sensor measurements from the KFG device measurements. The
lower and upper boundaries of the 95% confidence interval for the mean of the distribution were calculated. Finally, the percentages of
measurement uncertainties were calculated by dividing the estimated confidence intervals by the “limit value” throughout the analysis. The
European air quality directive 2008/50/EC (https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=en; see
ANNEX II upper and lower assessment thresholds) suggests that a limit value of 24 μg m−3 for continuous measurements of PM2.5.
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sensors was the slope coefficient of the fitted line statistically
significant.

2.4. Data Assimilation Methods for Air Quality
Mapping. One promising method to exploit the observations
from networks of LCSs is to combine their measurements with
the information provided by a high-resolution air quality
model. Unless the sensor network is very dense, a model is
required to realistically interpolate between the observations.
At the same time, the model benefits from the correction of
potential biases with actual measurements.

Over time, various methods have been developed for this
task, including data fusion methods based on geostatistics27

and data assimilation.28 Here, we use the optimal interpolation
(OI) approach, one of the most basic data assimilation
techniques and has seen widespread adoption and use in
numerical weather prediction for several decades. First
proposed by Gandin,29 OI involves merging two data sets, a
priori field (usually from a model) and observations, by
applying objective weights based on their respective
uncertainties to create an analysis field (see Supporting
Information SI.4 for further details on OI).

3. RESULTS AND DISCUSSION
3.1. Comparison of LCS Output and Reference (KFG)/

Reference-Equivalent Methods. Supporting Figure 5 shows
the calibration results for sensor ID 124, including and
excluding the intercept and relative humidity (RH) in linear
calibration equations. The RH coefficients and intercept are
statistically insignificant according to the p-values (p < 0.05).
Accordingly, in the calibration of the sensors (step 4 in the
data processing scheme), we did not include RH and intercept.
This might be related to the fact that we use 24 h averages.

Unfortunately, the Airly PM LCSs were not colocated at the
reference monitoring stations in Kristiansand during the
winter. To evaluate the efficiency of the proposed data
processing scheme, we collected data from other colocated
sensors in the traffic Haga site in Gothenburg, Sweden (Lon:
11.96054, Lat: 57.69785), and urban background Pekkasenka-
tu station in Lappeenranta (Lon: 28.24585, Lat: 61.05748),
Finland, from the same Airly sensor batch. Having a close
distance (200 km) to Kristiansand, Gothenburg has a climate
similar to Kristiansand. The results of colocation at the Haga
station and data correction are represented in Supporting
Figure 6 (in all following figures, the sensor-ref indicates the
raw output of the sensor compared to the reference
measurements). We first corrected the sensor data in the
Haga station by multiplying the raw sensor output by 0.49 and
then corrected the mean weekly bias from the reference
measurements. We computed the means of both sensor and
reference measurements, and the mean of the sensor
measurements was shifted to match the reference mean. Our
correction approach reduced the hourly sensor-ref MAE from
4.6 to 2.17 μg m−3 and the hourly sensor-ref RMSE from 7.02
to 2.87 μg m−3.

The uncertainty introduced by RH to the output of Airly
LCSs colocated at Haga and Pekkasenkatu stations before and
after the 5-step data processing scheme is represented in
Supporting Figure 7. We fitted normal distributions to the
sensor biases before and after correction at different RH
bins�60:10:100%. For example, for the sensor colocated at
the Haga station, the applied correction reduces the MB from
4.34 μg m−3 (95% confidence intervals: 3.97, 4.82) to 0.23 μg
m−3 (0.11, 0.33) at the RH bin of 90−100%. Hofman, Peters,

Stroobants, Elst, Baeyens, Van Laer, Spruyt, Van Essche,
Delbare, and Roels et al.30 also found the calibration of Airly
LCSs using raw sensors’ output, and the reference-equivalent
measurements will correct the sensor output with adequate
compensation for potential temperature and RH effects.

Figure 2c shows a scatter plot relating observations from the
daily gravimetric measurements (KFG) against daily averages
of the Airly LCS colocated in the same backyard. For PM2.5,
the factory-calibrated output of colocated sensor ID 124
showed an MB of 9.45 μg m−3 and an RMSE of 11.65 μg m−3.
The daily factory-calibrated PM2.5 measured by other sensors
(Figure 2a,b,d,e) in the Grim area have an acceptable r with
the reference data, with an r between 0.75 and 0.86. Note these
results are relevant to winter time, and only sensor ID 124 was
colocated with the KFG device; the maximum distance
between the sensors and the KFG device was ≈487 m (sensor
ID 85). For a summary of previous research on evaluating Airly
PM LCS performance, please refer to Supporting Information
SI.2.

Kang, Aye, Ngo, and Zhou31 reviewed 80 studies that
evaluated the performance of PM2.5 LCSs in outdoor
environmental settings and observed an

Ù
r2 equal to 0.72

(Q1 = 0.53 and Q3 = 0.85) for PM2.5 (
Ù
r2 = median r2,

including r that were converted to r2). Among them,26 studies
were focused on the evaluation of Plantower sensor kits; an

Ù
r2

= 0.82 (Q1 = 0.65 and Q3 = 0.9) was observed against the
reference-equivalent measurements. RMSE is less reported in
the literature; however, Hong, Le, Tu, Wang, Chang, Yu, Lin,
Aggarwal, and Tsai32 evaluated the hourly performance of 12
Plantower PMS5003 against BAM-1020 FEM (Beta Attenu-
ation Monitor) reference-equivalent instrument over a 1−2
year period in Taiwan. They reported factory-calibrated RMSE
values of 8.2, 15.53, 19.33, and 15.71 μg m−3 at different
reference monitoring stations (RH varying between 70.5 and
100% and air temperature ranging between 22.8 and 36.5 °C).
Correspondingly, Lee, Kang, Kim, Im, Yoo, and Lee33

colocated three Plantower PMS7003 at BAM PM711 High-
End PM Monitoring Station in Seoul, Korea, from Jan 15,
2019 to Sept 4, 2019 and reported an average daily factory-
calibrated RMSE of 17.3 μg m−3 (hourly RMSE = 22.05 μg
m−3) for PM2.5 measurements. Overall, the error/MB and r
values observed here align with the previous studies.

3.2. Comparison of Sensor Network and Reference
Monitoring Stations. 3.2.1. Whole Period of Data
Availability: Dec 2020−Aug 2022�Raw Data. The r
between raw (before the 5-step data processing scheme)
hourly PM2.5 measurements of each sensor and Bjørndalssletta
and Stener Heyerdahl reference stations and the corresponding
normalized-RMSEs (NRMSEs) during each month (Dec
2020−Aug 2022) are represented in Supporting Figures 8
and 9. RMSEs are normalized to the interquartile range of
PM2.5 concentrations measured at the reference stations.
Sensor data had to cover at least half of a month to be
considered for calculating the r and NRMSE of that month.

Variations in microclimate across the city and hyperlocal
sources of PM emissions can lead to substantial differences in
measurements of optical PM sensors compared to reference
stations.34 Based on the monthly rs between the raw output of
sensors and the reference air quality stations, it is evident that
the periods of April 2021 and April−May 2022 exhibit a
significant disparity between the sensor readings and the
official data. Spring cleaning activities increase variability across
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the city, causing increased differences between sensor
measurements and reference stations.35 Kuula, Mak̈ela,̈ Aurela,
Teinila,̈ Varjonen, Gonzaĺez, and Timonen36 argue that the
performance of PMS5003 in measuring PM2.5 depends on the
stability of the ambient air size distribution; the rapid changes
in ambient particle-size distribution and the proportions of
mass in, for example, <0.8 and >0.8 μm fractions increase the
PMS5003 inaccuracies. The increased disparity between the
sensor’s output and the official measurements may also be
attributed to the lower accuracy of the sensors, which could be
influenced not only by high PM2.5 concentrations but also by
the presence of high coarse PM.37

The data from two periods, Feb 2021 and March 2022, show
the highest deviation of the sensors from the reference stations.
According to the Copernicus Atmospheric Monitoring Service,
Europe experienced PM pollution episodes during both
periods. Between 19 and 27 of Feb 2021, a vast region of
south and middle Europe and, to a lesser extent, north Europe
were exposed to PM10 daily mean concentrations of 50−100
μg m−3 caused by an inflow of Saharan air along with
significant dust.38 The Northern Europe PM levels were even
stronger between 20 and 27 March 2022, driven by an
extensive anticyclone associated with dry and stagnant
conditions under a high-pressure system.39 According to the
sensor reference manual (https://www.plantower.com/en/

products_33/74.html, retrieved in Nov 2022; the error is
±10% at 100−500 μg m−3, while at 0−100 μg m−3, it is ±10
μg m−3) and previous studies, such as Kosmopoulos,
Salamalikis, Pandis, Yannopoulos, Bloutsos, and Kazantzidis,37

Hong, Le, Tu, Wang, Chang, Yu, Lin, Aggarwal, and Tsai,32

and Kang, Aye, Ngo, and Zhou,31 uncertainties in PMS5003
measurements increase at higher concentrations of ambient
PM2.5.
3.2.2. During the Winters (Dec−Feb): 2020−2021 and

2021−2022�Corrected Data. The 5-step data processing
scheme was applied to sensor network data during each winter.
Our analysis mainly focused on the winter period. The
measurement period includes the winters from 2021 (Dec
2020 to Feb 2021) and 2022 (Dec 2021 to Feb 2022). Only
the sensors with at least 75% data coverage during either of
these two winters or both were included in the analysis.
Following the data correction/quality assurance, during the
first winter, the average r between Stener Heyerdahl’s official
measurements and the sensors’ PM2.5 measurements was 0.73.
This quantity was 0.66 for the Bjørndalssletta reference station.
The average RMSE values of sensors from the Stener
Heyerdahl and Bjørndalssletta were 7.23 and 8.58 μg m−3,
respectively. During the second winter (2021−2022), r values
were 0.71 and 0.67, respectively, while RMSEs were 7.5 and
6.61 μg m−3 (Supporting Figures 10 and 11).

Figure 3. 24 h average PM2.5 in different neighborhoods measured by a network of Airly low-cost particulate matter sensors during the winters of
2021 and 2022, Kristiansand, Norway. The filled areas represent the interquartile range of the daily averages recorded by individual sensors located
within a neighborhood. The horizontal dotted line denotes the upper limit for the air quality threshold for health protection (24 h average PM2.5)
(https://luftkvalitet.miljodirektoratet.no/artikkel/artikler/helserad_og_forurensningsklasser/, retrieved in Nov 2022; Norwegian Environment
Agency). Supporting Figure 4 shows the maximum, minimum, and average daily temperatures for both winters obtained from the official
meteorological station at the Kjevik airport, approximately 17 km northeast of Kristiansand. 2021 was a cold winter, with long periods of negative
average daily temperatures and minimum temperatures reaching values below −10 °C. Kristiansand’s meteorological data during the analysis period
were retrieved from the integrated surface data set (global) of the National Centers for Environmental Information (https://www.ncei.noaa.gov/
access/search/data-search/global-hourly, accessed in Nov 2022) in the FM-15 surface meteorological airways format. The days with data coverage
≤ 75% were deleted from the analysis. With a mean daily average of 1.47 °C, winter 2022 was milder; however, there were also periods in
December with negative daily average temperatures and minimum temperatures below −10 °C. The data after applying the five-step data
processing scheme are used.
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The time series of daily averaged PM2.5 within each
neighborhood and whole city against the reference monitoring
stations are represented in Figure 3 and Supporting Figure 12,
respectively. During the first winter, Stener Heyerdahl and
Bjørndalssletta reference monitoring stations measured PM2.5
levels of 10.9 and 12.43 μg m−3, respectively. These values
were 10.92 and 10.23 μg m−3 during the second winter.
Overall, the daily PM2.5 concentrations in ambient air are
higher during the first winter; this can be attributed to the
colder winter of 2020−2021 (especially January onward) and
the resulting higher RWC. The sensors tended to under-
estimate the PM2.5 concentrations at low ambient PM
concentrations and overestimate at high ambient PM
concentrations (Supporting Figure 13).

Supporting Figure 14 shows the diurnal cycle calculated by
using the data from the LCSs and the data from the two
reference stations. The diurnal variation of the sensor data is
calculated as the mean of all deployed sensors per hour of day
per sampling site. According to the results, two peaks in PM2.5
concentrations (bimodal distribution), one between 8:00 and
12:00 and the other between 16:00 and 23:00, can be observed
in all three neighborhoods. The peak in the morning might be
attributed to a lower boundary layer, fumigation effect40�
which breaks nighttime inversion due to strengthened thermals

after the sunrise and causes mixing downward of aerosols
stabilized in the nocturnal residual layer�during early
morning rush-hour traffic,41,42 and RWC (due to the Covid-
19 lockdown). At the same time, the PM2.5 concentration
reduction in the afternoon (12:00−16:00) is mainly associated
with the higher boundary layer height43 and less biomass
burning. A similar bimodal distribution has been observed in
previous studies, such as Ravindra, Singh, Mor, Singh, Mandal,
Bhatti, Gahlawat, Dhankhar, Mor, and Beig,44 Singh, Singh,
Biswal, Kesarkar, Mor, and Ravindra,42 and Yadav, Sahu, Beig,
Tripathi, and Jaaffrey.45 The lowest concentrations of PM2.5 in
all neighborhoods are observed during the early morning hours
(4:00−8:00) in all regions.

The time series of the factory-calibrated output of the
sensors during the two winters are represented in Supporting
Figure 15, where the Valley Canyon effect46 on excessive PM2.5
concentrations in the Grim neighborhood is evident. The
average PM2.5 concentrations during the first winter (2020−
2021) in the three districts of Grim, Kvadraturen, and Lund
were 10.86, 9.46, and 10.05 μg m−3, while during the second
winter (2021−2022), the averages were 8.92, 8.36, and 8.65 μg
m−3, respectively.

A comparison of the PM2.5 output of sensors against the
traffic count data evidently (Supporting Figures 16 and 17)

Figure 4. Combining observations of low-cost sensor systems with model information through data assimilation, here shown for PM2.5 for the
period of 2020-12-01 through 2021-02-28. Top left panel: original uEMEP model, a priori data set (background), and sensor observations
(symbols); top right panel: the innovation, i.e., the difference between model prediction and sensor observation, at the sensor deployment sites;
bottom left panel: the concentration field resulting from the data assimilation (the “Analysis”) and the original sensor observations; bottom right
panel: difference between analysis and uEMEP model, indicating the spatial patterns of the corrections that were carried out as part of the
assimilation. Base map copyright OpenStreetMap contributors and map tiles by Stamen Design, under CC BY 3.0. The data after applying the five-
step data processing scheme are used.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c03661
Environ. Sci. Technol. 2023, 57, 15162−15172

15168

https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03661/suppl_file/es3c03661_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03661/suppl_file/es3c03661_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03661/suppl_file/es3c03661_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03661/suppl_file/es3c03661_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03661/suppl_file/es3c03661_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03661/suppl_file/es3c03661_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03661?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03661?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03661?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03661?fig=fig4&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c03661?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


shows that the local traffic load is not associated with the
measured PM2.5 levels, as reported in some studies, e.g., ref 47.
The daily averaged PM2.5 sensor measurements are compared
with the total vehicles per day counted by official traffic
inductive loops across the city. Traffic data were retrieved from
Statens Vegvesen�The Norwegian Public Roads Adminis-
tration (https://www.vegvesen.no/trafikkdata retrieved in Dec
2022).

3.3. High-Resolution Air Quality Mapping Using
Sensor Data Assimilation. The maps in Supporting Figure
18 show the spatial distribution of averaged PM2.5 concen-
trations measured by the static LCSs during the two winters of
2021 and 2022 against the corresponding output of the
uEMEP air quality model. The maps show that the model
cannot capture the high PM2.5 concentrations stemming from
the RWC in the Grim area. Additionally, the model output for
winter 2022 approximates a higher PM2.5 concentration, while
the output of LCSs shows higher PM2.5 levels during the first
winter (2021). We applied a simple OI-based data assimilation
approach to combine the Airly PM LCS network observations
with model information at an average seasonal scale. Figure 4
and Supporting Figure 19 show how data assimilation can be
used with LCS data to update a modeled concentration field
for PM2.5 using the original input data sets (uEMEP).

The assimilation results for the first winter period (2020-12-
01 through 2021-02-28) are shown in Figure 4. The top left
panel shows that the average sensor observations are generally
higher than the model-predicted values (top left panel),
particularly over the Grim area, where the sensors’
observations are significantly higher than the model-predicted
values. This results in relatively high positive innovation values
(top right panel). After the assimilation is carried out, the
analysis (bottom left panel) shows correspondingly a
significant positive adjustment of the model values over the
Grim area. Both reference stations measured slightly higher
values than the model predicted, so the values in the
northwestern Kvadraturen area and around the Bjørndalssletta
station have been moderately increased. The sensor-model
differences were minor in the rest of the domain, and as such,
the changes due to assimilation are more subtle in those areas.

Supporting Figure 19 shows the assimilation results for the
second winter period (2021-12-01−2022-02-28). Once again,
the sensor system deployed in the Grim area shows
consistently higher PM2.5 values than those predicted by the
model, although the overall levels are lower than those in the
2020−2021 season. Both reference stations and the rest of the
sensor systems in the Kvadraturen and Lund areas show PM2.5
values slightly higher than those of the model. Correspond-
ingly, the analysis shows an increase in PM2.5 levels around the
Grim area by about 4−5 μg m−3. Similarly, the model values
are corrected in the Kvadraturen and Lund areas, albeit only
slightly by ca. 1−2 μg m−3. The results qualitatively reveal that
data assimilation using a network of PM LCSs can improve the
quality of high-resolution spatial maps of urban air quality.

We performed a leave-one-out cross-validation (LOOCV)
scheme to assess the benefits of data assimilation. We ran the
assimilation N times, with N representing the number of valid
observations. In each run, one of the observations was
excluded, and we compared the value of the assimilated map
at the excluded site with that observed at the excluded site.
This was repeated for all sites, resulting in N pairs of values
(original model and assimilated map) for which the three
summary metrics MB, RMSE, and MAE were computed across

all N sites. This allowed us to evaluate the change in accuracy
provided by the assimilation compared to that of the standard
model run. We first report the LOOCV results for air quality
monitoring stations equipped with reference instrumentation.

For the 2020−2021 season, the data assimilation results in a
slight increase in the predicted PM2.5 of 6.93−6.98 μg m−3 at
the Bjørndalssletta station and from 6.26 to 7.09 μg m−3 at the
Stener Heyerdahl station. In both cases, the assimilation
nudged the concentration field closer to the observed PM2.5
values of 12.4 and 10.9 μg m−3, respectively. For the 2021−
2022 season, the values at the Bjørndalssletta station increased
from 6.69 to 6.77 μg m−3 (observed value 10.2 μg m−3) and for
the Stener Heyerdahl station from 6.14 to 7.91 μg m−3

(observed value 10.9 μg m−3). In all cases, these changes are
in the right direction (toward the observed values) but
relatively minor due to the stronger weight given in the
assimilation to the highly accurate reference measurements.

However, the LOOCV results for the entire network show a
much more significant impact of the assimilation: the results
calculated over all observation sites (air quality monitoring
stations and sensors) demonstrate that by assimilating the data
from the sensor network and the two reference stations, we
reduced the MB in the winter season 2020−2021 from 5.2 μg
m−3 in the regular model run to 2.9 μg m−3 in the assimilation.
The RMSE decreased from 5.5 to 3.4 μg m−3, and the MAE
decreased from 5.2 to 3.1 μg m−3. This equates to relative
accuracy improvements of approximately 44, 38, and 41% for
MB, RMSE, and MAE, respectively. For the winter season
2021−2022, the MB reduced from 4.0 to 1.7 μg m−3 (−56%),
the RMSE from 4.25 to 2.2 μg m−3 (−50.48%), and the MAE
from 4.0 to 1.9 μg m−3 (−52%).

3.4. Limitations and Suggestions for Future Studies.

• Facing a rapid increase in cases of the Covid-19 virus,
the Norway government introduced a country-wide
lockdown on March 12th, 2020, which lasted principally
until May 7th, 2021. Similarly, during the second winter,
a partial lockdown was imposed in Dec 2021 to respond
to the Omicron variant of the virus. Thus, the results
here are affected by measures imposed during the
lockdown periods.

• The application of correction factors obtained from
colocating one sensor with others may introduce
uncertainties due to variations in sensor performance.
Individual calibration of all sensors is the recommended
quantitative solution to address this. However, in certain
LCS studies with multiple sensors, calibrating each
sensor individually may not be feasible due to time,
funding, logistics, and human resource limitations.

• Only one sensor (ID 124) was colocated with the KFG
device, while the remaining sensors were placed several
hundred meters away. The spatial variability within the
sensors (Grim area) could affect the sensor performance
evaluation, even though they were deployed relatively
close.

• The third step of the five-step data processing may lead
to the exclusion of accurate sensor measurements.
Quality control of crowdsourced data is challenging,
but it is advisable to eliminate any erroneous values
through basic checks.48 However, distinguishing be-
tween incorrect and correct data is not always
definitive,49 which can limit the filtering approach as it
may discard valuable data.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c03661
Environ. Sci. Technol. 2023, 57, 15162−15172

15169

https://www.vegvesen.no/trafikkdata
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03661/suppl_file/es3c03661_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03661/suppl_file/es3c03661_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03661/suppl_file/es3c03661_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03661/suppl_file/es3c03661_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c03661?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


• The r between sensor measurements and filter samplers
may vary depending on the type of aerosol being
measured.

• The influence of RH was not explicitly considered
during the sensor data processing. More advanced
calibration techniques like machine learning can
potentially incorporate RH in the calibration process.
During both winters, the daily average for the RH was,
most of the time, above 70% (87.22%).

• The uEMEP model has undergone extensive validation,
but there may be instances where it disagrees with
sensor data. Improvements to the model could involve
refining emission inventories, enhancing the accuracy of
emission factors, improving meteorological inputs (e.g.,
wind speed and direction), and enhancing the
representation of chemical reactions.

• In this study, the adopted data assimilation approach
only improved the spatial representation of the uEMEP
model. Future research could explore the feasibility and
benefits of assimilating data at an hourly resolution to
better capture and represent system dynamics.

• Sensitivity analysis and comparison with existing models
or assimilation techniques can help identify uncertainties
and biases in the assimilation results.

• Collecting measurements that are not employed in the
assimilation and original air quality models is advisable.
These measurements should be included in future
studies to validate the assimilation results.

• A potential suggestion is to consider using the nearest
neighbor approach instead of the entire network during
the data screening step 3. However, questions may arise
about what criteria determine the nearest neighbors,
such as spatial distance, similarity in PM emission
sources, similarity in environmental conditions, or land
use.

In conclusion, the study demonstrates the calibration and
performance evaluation of Airly PM LCSs compared with
reference monitoring methods. Pollution levels from PM2.5
were especially high in one of the neighborhoods (Grim)
located in a small valley in the northern part of Kristiansand.
The results indicate that including RH and intercept in the
calibration equations may not be necessary for specific
sensors/applications. Data proposed 5-step data correction/
processing technique improved the accuracy of the sensor
measurements, reducing the MAE and RMSE. The results also
show that citizen observations using LCS can complement
official in situ reference stations and air quality models, offering
real-time high-resolution health protection data and evidence-
based decision-making. The findings contribute to our
understanding of the capabilities and limitations of LCSs for
monitoring RWC.
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