
PNAS  2024  Vol. 121  No. 6  e2306200121 https://doi.org/10.1073/pnas.2306200121   1 of 9

RESEARCH ARTICLE | 

Significance

Our findings indicate that the 
relationship between urban 
vegetation and air quality is more 
complex than previously thought. 
While urban greening has other 
positive health outcomes for 
residents, our study suggests 
that it may not be an efficient 
abatement measure for air 
pollution. Although we found 
minor amelioration effects of 
vegetation at the borough to city 
scale, street- level vegetation can 
act to exacerbate air pollution. 
Reducing anthropogenic 
emissions instead of urban 
greening should be the primary 
focus for improving air quality.
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The assumption that vegetation improves air quality is prevalent in scientific, popular, 
and political discourse. However, experimental and modeling studies show the effect 
of green space on air pollutant concentrations in urban settings is highly variable 
and context specific. We revisited the link between vegetation and air quality using 
satellite- derived changes of urban green space and air pollutant concentrations from 
2,615 established monitoring stations over Europe and the United States. Between 
2010 and 2019, stations recorded declines in ambient NO2, (particulate matter) PM10, 
and PM2.5 (average of −3.14% y−1), but not O3 (+0.5% y−1), pointing to the general 
success of recent policy interventions to restrict anthropogenic emissions. The effect 
size of total green space on air pollution was weak and highly variable, particularly at 
the street scale (15 to 60 m radius) where vegetation can restrict ventilation. However, 
when isolating changes in tree cover, we found a negative association with air pollution 
at borough to city scales (120 to 16,000 m) particularly for O3 and PM. The effect 
of green space was smaller than the pollutant deposition and dispersion effects of 
meteorological drivers including precipitation, humidity, and wind speed. When 
averaged across spatial scales, a one SD increase in green space resulted in a 0.8% 
(95% CI: −3.5 to 2%) decline in air pollution. Our findings suggest that while urban 
greening may improve air quality at the borough- to- city scale, the impact is moderate 
and may have detrimental street- level effects depending on aerodynamic factors like 
vegetation type and urban form.

vegetation | urban planning | green infrastructure | ecosystem service | public health

Exposure to air pollution currently results in more deaths than malaria, tuberculosis, and 
HIV/AIDS combined (1). Particulate matter with a diameter of less than 2.5 µm (PM2.5) 
is estimated to cause up to 10 million excess deaths globally (2, 3). Consequently, the 
World Health Organization has identified air pollution as the single biggest environmental 
threat to human health (4). Given that over 70% of the global health burden from air 
pollution is attributable to anthropogenic emissions (3, 5), the majority of policies to 
improve air quality are focused on cutting emissions (6). Examples of emission abatement 
actions include cleaner energy production, efficient industrial smokestacks, reduced reli­
ance on diesel vehicles, and sustainable agriculture practices. An alternative set of strategies 
involve removing or remediating air pollution after it has been emitted, through both 
active and passive abatement technologies (7). While active abatement technologies such 
as physical- chemical filters dominate the literature on indoor air pollution (8), passive 
abatement methods—such as utilizing vegetation—are most prevalent in the literature 
on outdoor or ambient air pollution (9).

The assumption that urban vegetation, also referred to as green space or green infrastruc­
ture, can improve air quality is widely held in the public health (10), urban planning (11), 
and ecosystem service (12) literature. Popular media (e.g., ref. 13) and even international 
standards and policy frameworks such as the UN System of Environmental- Economic 
Accounting propose vegetation as a nature- based solution to decrease air pollution (14). 
The primary mechanisms through which air pollution may be reduced by vegetation include 
deposition and dispersion (15). Deposition occurs when air pollutants adsorb to vegetative 
surfaces, whereas dispersion involves the dilution of air pollutant concentrations due to 
aerodynamic effects induced by vegetation structures. Dispersion effects outweigh deposi­
tion by an order of magnitude (16). However, the mechanisms of dispersion effects can 
also increase local air pollution concentrations—depending on the structure of the vege­
tation (e.g., height, leaf density), site context (e.g., street canyon geometry, distance to 
emission source), and prevailing weather (e.g., wind speed and direction) (11, 16). For 
instance, dense tree canopies can reduce ventilation in street canyons, and porous vegetation 
barriers in open- road settings can exacerbate roadside air pollution concentrations (9, 17). 
Vegetation can also produce volatile organic compounds (VOC) that, in cases like Los 
Angeles,  contribute to a quarter of the secondary organic aerosol on hot days (18).  
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Although there is evidence that vegetation can ameliorate air pol­
lution under the right circumstances, there is ample experimental 
and modeling evidence to the contrary (9, 10, 17). The conflict 
in the scientific literature is perhaps why the blanket assumption 
that urban green space reduces air pollution remains widespread 
in popular discourse. One possible explanation for the knowledge 
gap is the local nature of experimental and modeling studies that 
are not necessarily generalizable across broader spatial scales.

Here, we use regional observational data to test the hypothesis 
that changes in ambient air pollution are associated with changes 
in surrounding urban green space. We use an established network 
of air quality stations over Europe (from the European Environ­
mental Agency; EEA) and the United States (from the Environ­
mental Protection Agency; EPA) to derive annual time series of 
NO2, PM10, PM2.5, and O3 concentrations between 2010 and 
2019. Green space changes around each air quality station are 
measured using (1) the normalized difference vegetation index 
(NDVI) and fractional tree cover from moderate resolution sat­
ellites and (2) visual interpretation of very high- resolution aerial 
imagery at a sub- set of air quality stations. Using linear 
mixed- effects models, we estimate the association between green 
space and air quality after controlling for changes in anthropogenic 
emissions and climate.

Results and Discussion

Air Pollution Changes. Data from 2,615 air quality stations 
revealed declines in ambient NO2 (−2.9 ± 0.06% y−1 95% CI), 
PM10 (−2.93 ± 0.06% y−1), and PM2.5 (−3.6 ± 0.1% y−1) between 
2010 and 2019 (Fig.  1). In absolute terms, this equates to an 
average decline in concentration of 7.95 (NO2), 4.6 (PM10), and 
3.83 µg m−3 (PM2.5). In contrast, O3 increased in concentration 
by 0.5 ± 0.08% y−1. Declines were relatively consistent across 
the United States and Europe, although increases in pollutant 

concentrations were evident in Southern Europe and Western 
United States, especially for PM (SI  Appendix, Fig.  S1). The 
changes in air quality found here are broadly consistent with 
the trends reported in earlier studies using both the regulatory 
monitoring station networks as well as satellite instruments (e.g., 
refs. 19–22). The trend values found here are slightly higher in 
magnitude than a very recent paper studying European air quality 
trends for the 2005 to 2019 period after correcting for the impact 
of meteorology (23). The latter found median trends of −2.1% y−1 
for NO2, −2.2% y−1 for PM10, and −2.2% y−1 for PM2.5 for urban/
suburban stations. It should be noted that in absolute terms the 
reductions found in this study as well as in Walker et al. (23) (ca. 
−4 to −13 µg m−3 for NO2, −7 to −13 µg m−3 for PM10, and −4 
to −7 µg m−3 for PM2.5, all for the 14- y period) are substantially 
smaller in magnitude compared to reductions found for example 
in China [ca. −8.2% y−1 and ca. −20 µg m−3 overall for PM2.5 for 
2013 to 2017, (24)]. However, trends can vary significantly with 
the selected study period as well as the applied methodology and 
are thus challenging to directly compare between different studies.

Drivers of Air Pollution Change. To a large extent, the broad- 
scale improvements in air quality found here are a direct result of 
successful policy- driven emissions reductions that have been carried 
out in both Europe and the United States over the study period 
(25). The same responses to emission regulations have recently 
been observed in China (24). However, our approach explored 
whether local- scale processes such as vegetation change and 
climate dynamics might explain some of the spatial and temporal 
variation in air quality changes. We first stratified our change 
analysis by biome, given that biome- specific vegetation types and 
dominant climate are important mediators of vegetation’s effects 
on air quality. Stations falling within the forest biomes exhibited 
greater declines compared to those in the Mediterranean shrubland 
and savanna/grassland biomes, particularly for PM (SI Appendix, 

Fig. 1. Distribution of the air quality–monitoring stations across biomes in Europe (n = 2,127) and the United States (n = 488) (A). Inset histograms show the 
proximity of stations to roads and the building footprint within 30 m. Air pollutant time series along with linear trends are shown in (B).D
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Fig. S1). This is possibly due to the long- range aerosol transport 
of dust and smoke, which is more prevalent in arid environments 
such as the Mediterranean. It is also possibly due to the greater 
deposition and dispersion capacity of forest vegetation compared 
to Mediterranean shrubland. We found that, while PM10, PM2.5, 
and NO2 were positively correlated with each other at the 
station level, O3 showed greater variability and was most often 
negatively correlated with the other air pollutants (SI Appendix, 
Fig. S2). This is due to nonlinear chemical interactions between 
NOx and VOCs (26). For instance, the emission decline of NOx 
(=NO + NO2) can lead to reduced local titration of O3 (reaction 
of NO with O3).

We explored the association between changes in green space 
and air pollution using linear mixed models that controlled for 
the effects of local emissions and climate changes. Two character­
izations of vegetation surrounding air pollution stations were 
derived from satellites including green space in general and tree 
cover in particular. NDVI from the Landsat satellites at 30 m 
resolution was used to quantify total green space because it is a 
widely used proxy for capturing dynamics in vegetation cover and 
productivity (27). We used a product developed by the United 
States Geological Survey from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) at 250 m resolution to quantify 
changes in tree cover. Changes in total green space and tree cover 
were aggregated within circular buffer zones surrounding air pol­
lution stations with radii ranging from 15 to 16,000 m. To aid 
interpretation, we categorized spatial scales of street- level (15 to 
60 m), borough- level (120 to 1,000 m), and city- level (2,000 to 
16,000 m). Due to the limited spatial resolution in MODIS data, 
we were not able to characterize changes in tree cover at street- level, 
yet we were able to using Landsat NDVI.

The effect of changes in total green space on mean annual and 
peak air pollution changes was negligible when aggregated across 
spatial scales (Fig. 2). Please note that “effect” here refers to the 
statistical direction and magnitude of association between explan­
atory and response variables and should not be interpreted as indi­
cating causality. When averaged across pollutants, a one SD 
increase in total green space was associated with a 0.8 ± 2.7% 
decrease in pollutant concentrations. Despite the lack of an overall 
green space effect, increases in tree cover in particular were associ­
ated with declines in O3, PM10, and PM2.5. When averaged across 
pollutants, a one SD increase in tree cover was associated with a 
1.4 ± 2.5% decrease in pollutant concentrations. The largest tree 
cover effect size was for PM where, on average, one SD increase 
in percentage tree cover resulted in a 2.7% decline in pollutant 
concentrations, equating to 0.27% y−1 (Fig. 2A). The effect sizes 
of green space were smaller in magnitude than climatic drivers. 
For example, one SD increase in relative humidity was associated 
with an 8% decrease in peak annual NO2, O3, and PM2.5 (Fig. 2B). 
Humidity, wind speed, and precipitation also had negative asso­
ciations with all pollutants except for O3.

Given the larger effect sizes from climatic drivers, meteorolog­
ical dynamics may dominate the marginal effects that green space 
may have when aggregating across spatial scales. Our finding aligns 
with the balance of the evidence from observational studies. For 
instance, in a similar analysis across 31 provincial capital cities in 
China, He et al. (28) found that meteorology explains 70% of the 
variance in urban pollutant concentration reduction. In another 
study in China between 2014 and 2019, wind speed and precip­
itation were significantly negatively correlated with urban air pol­
lution concentrations at most of the 896 stations (29). The general 
consensus is that traffic- induced pollution is more prevalent in 

Fig. 2. Empirical estimates of the association between annual mean (A) and maximum (B) air pollutant changes, and changes in green space, emissions, and 
climate predictor variables. Estimates and 95% CI are indicated with points and error bars and are expressed as percentage changes in air pollutant concentrations 
per SD (δ) increase in the predictor variable. The size of the point indicates the magnitude of the effect.D
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stagnant, cold weather conditions in urban areas. However, the 
response of PM to wind can vary depending on wind speed and 
street canyon orientation and form–as well as particle size. For 
example, coarse particle deposition on vegetation occurs more 
efficiently at high wind speeds, while ultrafine particles accumulate 
more slowly (15). Apart from one study in India finding negative 
correlations between PM and humidity (30), reviews of the liter­
ature show that the effect of humidity on air quality is understud­
ied (11). Our findings suggest a negative relationship between 
humidity and air pollution, which might be due to an increased 
rate of absorption of particulates in the atmosphere at elevated 
humidity. Humidity is also highly correlated to precipitation and 
this combination may act as a natural scrubber through increased 
particle deposition on all surfaces.

In our spatially aggregated models, we explored both annual 
mean (Fig. 2A) and annual peak (Fig. 2B) pollution concentra­
tions. The effect sizes of green space, emissions, and climate var­
iables across pollutants were similar when considering changes in 
annual mean versus peak concentrations (Fig. 2B). This suggests 
that the association between vegetation and air pollution is unaf­
fected by the severity of pollutant concentrations within the years 
considered. Hereafter, we focus on associations with mean annual 
pollutant concentrations which is often used a proxy for cumula­
tive exposure in epidemiology studies (2, 31).

The effect of green space varied over spatial scales (Fig. 3A). 
Total green space exhibited a negative association with NO2 at 
borough scales, but the effect was minimal at street and city scales. 
The negative effect of tree cover on O3, PM10, and PM2.5 was 
enhanced with increasing spatial extent from borough to city 
scales. Fine PM2.5 exhibited divergent responses to green space at 
the city scale (Fig. 3A); while tree cover had a negative effect, total 

green space had a positive effect. Changes within the coniferous 
forest biome were driving this divergent response (Fig. 3B). In 
contrast, both total green space and tree cover in particular had 
negative effects on PM concentrations in the savanna/grassland 
biomes, albeit with greater variation in their effect as indicated by 
95% CI.

To test the robustness of our finding that there is little effect of 
street- scale changes in green space on air pollutant changes, we 
performed a manual verification exercise of the satellite- derived 
NDVI time series. We screened the green space changes at a subset 
of stations within 60 m of air quality monitors. We first ranked 
stations by the magnitude of their trend in NDVI to identify 
candidate stations for manual screening. Then, we used visual 
interpretation of historical satellite imagery in Google Earth Pro 
(examples in Fig. 4) to produce a sample of 37 stations with ver­
ified gains in green space extent (mean gain of 13.7% total cover 
and 8.3% tree cover in particular) and 65 stations with verified 
green space losses (mean loss of 17.4% total cover and 6.7% tree 
cover). We found no significant difference in pollutant concen­
tration changes between stations with gains and losses of total 
green space (Fig. 5A) or tree cover in particular (Fig. 5B). This 
lack of green space effect was consistent across all pollutants, 
thereby corroborating the results from our satellite- based statistical 
models. The result aligns with findings from local- scale experi­
ments and modeling work demonstrating that planting vegetation, 
especially tall vegetation, close to emission sources such as along 
roadsides can reduce microscale ventilation and consequently 
exacerbate ambient pollution levels (9, 16, 32). Site conditions 
largely dictate the aerodynamic effect of green space on air quality 
at local scales. For example, aerodynamic effects can be beneficial 
in terms of channeling pollutants away from pedestrians (15).  

Fig. 3. Empirical estimates of the association between annual mean air pollutant changes, and changes in green space predictor variables including NDVI (total 
green space) and fractional tree cover. Separate models and effect sizes were estimated for each spatial scale over which green space was aggregated (A) and 
each biome within which stations were located (B). Estimates and 95% CI are indicated with points and error bars and are expressed as percentage changes in 
air pollutant concentrations per SD (δ) increase in the predictor variable. The size of the point indicates the magnitude of the effect.D
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In cases where there are detrimental aerodynamic effects, however, 
the dispersion effect of urban green space can often be considerably 
stronger than the pollutant removal capacity of vegetation via 
deposition (16).

Study Limitations. We acknowledge that our analysis is purely 
correlative and that we cannot elucidate causal links between air 
quality and its drivers. Nevertheless, when placed in the context of 
experimental and modeling studies which do not find consistent 

Fig. 4. Example of an extreme increase (A−C) and decrease (D−F) in green space within a 60- m buffer (street- level) of two air quality–monitoring stations. Aerial 
photographs from Google Earth Pro shown for reference.

Fig. 5. Changes in air pollutant concentrations at street- level (within 60 m) between 2010 and 2019 for a sub- set of air quality stations with the greatest gains 
(n = 37) and losses (n = 65) in green space (A) and tree cover (B) over the same period. P- values derived from linear mixed- effects models are shown to indicate 
no significant difference (P = 0.05) in air pollutant changes between stations with extreme gains and losses of green space.D
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effects of vegetation on air quality, our results suggest the causal 
links are scale-  and context- specific and not widely generalizable. 
In addition, we attempted to control for potential confounders 
in our statistical models including anthropogenic emissions and 
climatic variations. With higher resolution emissions data such as 
road- specific traffic time series, we might expect to explain more of 
the temporal variation in air pollution concentrations. Similarly, 
the detail captured by the satellite data we used was limited, 
and thus we could not characterize spatio- temporal variation in 
vegetation characteristics such as shape, size, and porosity which 
are important determinants of air pollutant deposition and 
dispersion (16, 33). Further, topography and urban form play 
a key role in associations between wind speed and street canyon 
ventilation. In our study, we did not have the data to quantify 
changes in urban form surrounding air quality stations. Apart from 
microscale determinants of air quality, we could not incorporate 
macroscale dynamics that operate at regional scales such as long- 
range transport of aerosols, particularly for Southern Europe.

The satellite time series used to quantify green space change 
in our analysis may be subject to temporal biases caused by image 
artifacts like cloud contamination or atmospheric interference 
(34). To mitigate these artifacts, we performed rigorous satellite 
data pre- processing and manually verified green space changes 
at a subset of sites using visual interpretation of aerial imagery. 
The correspondence between samplers was 84% for changes in 
total green space and 85% for changes in tree cover (SI Appendix, 
Table S1). Finally, it is important to note that the absolute pol­
lutant concentrations in our study are low compared to those 
found in India and China. Therefore, it is possible that a greater 
vegetation effect on air quality emerges at substantially higher 
pollutant concentrations than the range that was captured in 
our data.

Implications and Conclusions. Our findings add important 
nuance to the assumption generally held in the literature and 
public discourse that green space improves air quality. We found 
that the extent to which green space ameliorates air quality varies 
widely between green space type (tree cover versus total green 
space), spatial scale, and biome. Recent reviews of the literature 
have identified a significant knowledge gap regarding how green 
space impacts on air pollution vary across a range of spatial scales 
(10, 32). We found that total green space had no significant effect 
at street- level, yet at borough to city scales, tree cover in particular 
was associated with declines in O3, PM10, and PM2.5. This aligns 
with theory and modelling work which suggest that at local 
scales, dispersion and aerodynamic mechanisms are dominant 
and may act to exacerbate air pollution. However, at regional 
scales, deposition mechanisms are dominant and act to mitigate 
air pollution (10, 16). Indeed, in a review of experimental and 
modeling literature, the presence of vegetation in street canyons 
led to an average rise of 20 to 96% in pollutant concentrations 
when compared to street canyons lacking vegetation (9). At city 
and regional scales, modeling studies estimate that green space 
can ameliorate air quality via deposition, albeit at slow rates of 
between 1 and 2% over decadal time frames (10, 35–37). In our 
analysis spanning two continents, we found even smaller effects 
of green space—0.8% decrease in pollutant concentrations over 
10 y—when averaging over spatial scales.

Authors routinely portray the role of urban vegetation in reduc­
ing air pollution as a central ecosystem service in regulating urban 
environments (38), and the most cited economic benefit of urban 
trees (39). These widely held assumptions have resulted in urban 
vegetation and air quality featuring prominently in proposals for 
generating environmental economic accounts, including the UN 

System for Environmental- Economic Accounting accounts for 
urban areas (14). Modeling tools which focus on deposition [e.g., 
i- Tree Eco (40)] and those that focus on dispersion (e.g., fluid 
dynamic models reviewed in ref. 41) are often used to account for 
the beneficial effects of urban vegetation on air quality. While mod­
els used in ecosystem accounting like i- Tree Eco estimate air quality 
improvement with a tree- centric deposition model, other models 
calculate pollutant capture based on estimated deposition velocities 
of broadly defined land cover categories (42). Nonetheless, propo­
nents of deposition models contend that the absolute volumes of 
deposition on tree surfaces translate into “substantial health bene­
fits” (37). Our results provide further evidence to a growing con­
sensus that i- Tree Eco and similar models may substantially 
overestimate both the effect urban vegetation has in providing air 
quality improvements and corresponding human health values, 
particularly when interpreted at local scales (43).

Several issues raise questions about the accuracy and generaliz­
ability of deposition models which do not account for the disper­
sion dynamics introduced by vegetation at the street- level. First, 
these models do not account for the spatial context of vegetation 
in terms of its spatial configuration and proximity to other urban 
infrastructure which can act to reduce or increase ventilation. Such 
ventilation and dilution effects have demonstrably greater capacity 
to reduce pollution concentrations than deposition (16, 44). 
Second, deposition models do not account for any aspects of pol­
lution dispersion or potential feedback between processes that 
respond to changes in atmospheric chemistry and wet deposition 
(35). Elevated levels of dry deposition on vegetation can reduce 
wet deposition enough to substantially reduce or nearly negate 
dry deposition effects, particularly for slowly depositing com­
pounds like PM2.5. Third, the parameters for deposition velocity 
used in i- Tree Eco and similar models are generated from a small 
number of studies involving conditions that may not generalizable 
to other regions or tree species (15).

Given the variation in street- level vegetation effects on air qual­
ity, and the overall minor effect size (−0.8% over 10 y) observed 
in our study, there is reason for skepticism about the estimated 
health benefits that urban green cover supposedly generates via 
improving air quality. In their interdisciplinary review, Eisenman 
et al. (43) highlight a conspicuous lack of empirical support for 
the purported links between urban green cover and positive effects 
on human health—such as a lower prevalence of asthma. With 
only one exception (45), all population- based empirical human 
health studies covered in their review either contradict or fail to 
support the purported benefits of urban trees in reducing asthma. 
Many investigations either find no link between urban tree cover 
and childhood asthma (46, 47) or find that areas with increased 
tree pollen can lead to higher seasonal peaks in emergency depart­
ment visits, hospitalizations and allergy medicine prescriptions 
among both children and adults (48). In contrast to using mech­
anistic models of the biophysical interactions of trees and air pol­
lution levels, the epidemiological research linking trees to 
respiratory illness highlights negative effects of trees’ pollen pro­
duction—not the benefits of pollution reduction (43).

While our results do not support the hypothesis that the veg­
etation effects on air pollution would lead to substantial public 
health benefits, there are still many important reasons for includ­
ing trees in urban environments. Trees and other urban greenery 
are vital components of urban ecosystems and biodiversity. They 
ameliorate extremes in urban area hydrology (both flooding and 
drought) and contribute to microclimate regulation. Through 
reducing the heat- island effect, trees can reduce urban residents’ 
mortality from extreme temperatures (49). Urban green spaces 
can also promote physical activity, and improve mental health D
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outcomes such as mood and mental attention, which ultimately 
improve community wellbeing (50, 51).

In light of the evidence that urban trees may, in certain config­
urations, actually worsen air quality, Vos et al. (16) propose a 
paradigm shift, moving from asking “How to use urban vegetation 
to improve local air quality?” to “How can urban vegetation be used 
without significantly deteriorating the local air quality?”. Recent 
reviews of the literature (9–12, 15, 17, 32, 52) show that vegeta­
tion performs best when it has a limited impact on decreasing 
airflow. For example, dense rows of trees without gaps and with 
closed canopies should be avoided in street canyons with high 
traffic. In more open areas with greater airflow, vegetation can 
serve as a barrier between an emission source and pedestrians but 
not as an air filtration device. Other guiding principles for 
road- side vegetation include: i) low- level vegetation like hedges 
are best for street canyons so long as they are continuous, dense 
(low- porosity), and preferably centrally located as opposed to 
alongside the street; ii) mid-  to high- level vegetation like trees are 
appropriate for open road environments (i.e., outside street can­
yons) so long as they are dense and continuous acting as barriers 
between the road and surrounds. Urban planners should also 
consider whether the tree species may be capable of producing 
large amounts of either pollen or biogenic VOC that can decrease 
air quality. Physical barriers constructed from non- vegetative 
material may also be effective at mitigating air pollution if the 
above guidelines are followed. However, if the focus is on 
large- scale air pollution abatement with significance for public 
health, our results suggest that post- emission strategies such as 
urban greening are inadequate solutions. By continuing to pro­
mote vegetation’s purported capacity to mitigate pollution, we 
risk diverting resources from the most important strategy for 
improving air quality: reducing anthropogenic emissions.

Materials and Methods

Air Pollution Data. We collected historical NO2, PM10, PM2.5, and O3 daily time 
series from air quality stations managed by the United States EPA (53) and the EEA 
(54) between 2010 and 2019. We chose air pollutants that are most often cited 
as significant risk factors for negative public health outcomes (1, 55) and that are 
most commonly used in studies exploring the effects of vegetation on air quality 
(10, 56). The EEA dataset contained 6,569 stations and the EPA dataset 2,871 
stations that recorded concentrations for our selected pollutants during the study 
period. We used the Global Human Settlement Layers published by the European 
Commission (57) to identify stations located within urban and suburban areas. 
Here, urban was defined as 1 × 1 km grid cells with a density of built- up surface 
greater than 50%, and a density of at least 300 inhabitants and a minimum total 
population of 5,000. The sample sizes after filtering for urban stations were 4,791 
for EEA and 1,421 for EPA. To better characterize the variation in urban context 
covered by the stations, we used OpenStreetMap data to calculate the distance to 
the closest road and the building footprint within a 30 m radius for each station.

Station time series were first aggregated to monthly averages. From the 
monthly time series, we derived annual averages and maximums, given that 
we were interested in how green space is associated with inter- annual changes 
in air pollution. Although annual averages allow us to explore the cumulative 
effect of green space throughout the year, the annual maximum allows us to test 
whether green space might have a larger effect size on months with peak pollut-
ant concentrations. Raw pollutant time series were iteratively aggregated from 
hourly to daily to monthly and finally annual increments using a data exclusion 
criterion of 25% for each temporal increment as applied by the EEA and Solberg 
et al. (58). The data exclusion criterion meant that a time period was excluded if 
there were more than 25% missing readings during that period. Similarly, we 
excluded station time series with more than 3 y of missing data between 2010 
and 2019 (~25% of the 10- y time series). Following the time series filtering, our 
dataset included 2,127 EEA stations and 488 EPA stations, resulting in 5,558 
unique pollutant time series from 2,615 stations.

Urban Green Space Data. We derived two satellite- based measures of green 
space including the NDVI (59), and fractional tree cover. The former allows us to 
explore changes in green space in general, while the latter focusses on tree cover 
in particular. NDVI is a good proxy for fractional vegetation cover, and its temporal 
dynamics correspond to changes in vegetation structure and productivity over 
time (27). Trees are the object of most air quality mitigation studies and therefore 
changes in tree cover are expected to have the largest effects on pollutant concen-
trations relative to grass or shrubs (16, 37). We calculated NDVI from the Landsat 
satellite archive at 30 m resolution and fractional tree cover from the Terra MODIS 
Vegetation Continuous Fields dataset produced by the United States Geological 
Survey at 250 m resolution (60). Satellite data were extracted for a range of buffer 
zones (between 15 m and 16,000 m radii) around each air quality station between 
2010 and 2019. Due to the limited spatial resolution of the MODIS tree cover 
data, and given no other high- resolution tree cover time series data are currently 
available, we were only able to extract tree cover changes for buffer sizes greater 
than 120 m. The range of buffer zones was chosen based on the most common 
spatial scales employed in air pollution dispersion models in the literature (52). 
We further categorized the zones into spatial scales of street- level (15 to 60 m), 
borough- level (120 to 1,000 m), and city- level (2,000 to 16,000 m).

While the MODIS tree cover data were pre- computed, we generated NDVI 
from Landsat 7 and 8 surface reflectance images which were processed in the 
Google Earth Engine cloud- computing environment (61) to exclude cloud-  and 
snow- covered pixels using the “pixel_qa” band. Given we were working across 
two Landsat sensors, we applied published cross- calibration coefficients to 
harmonize Landsat 7 and 8 reflectance values to ensure consistency in spectral 
responses over time (62). We calculated annual median NDVI values for each 
Landsat pixel within the station buffer zones around each station. The annual 
median was used to avoid undue influence from NDVI outlier values. The pixel 
values were averaged across each buffer zone for each year in the time series. The 
MODIS tree cover product is delivered as annual averages; therefore, no temporal 
aggregation was necessary.

To supplement the large- scale NDVI and tree cover analysis, we conducted a 
manual screening for extreme changes in green space where one would expect 
to find the largest effects on air quality. To do, this we calculated the linear trend 
in NDVI for each air quality station between 2010 and 2019. Candidate stations 
were ranked according to the magnitude of change in NDVI, and 125 stations with 
the greatest increases and decreases in NDVI were chosen for manual screening. 
Candidate stations were randomly split between five samplers (the authors of the 
paper) who used visual interpretation of Google Earth historical aerial imagery to 
estimate percentage changes in green space within a 60- m buffer of each station 
(see examples in Fig. 3). Green space was defined as any vegetated surface that 
was not cultivated including parks, road verges, green belts, trees, and green 
roofs. In addition to changes in total green space, the data collection protocol 
differentiated changes in trees versus grass/shrubs. We chose 60 m because it 
is an intermediate distance reported in the literature on microscale air pollution 
dispersion representing street- scale effects (52), and it was practical to estimate 
changes in green space through visual interpretation of aerial imagery. After 
filtering out stations where aerial imagery was missing in 2010 or 2019 or was 
too blurry to make an informed decision about green space change, we were left 
with a final sample of 37 stations with confirmed increases in green space and 
65 with confirmed declines in green space.

To cross- validate the manual screening, green space changes at a random 
subset of 15 stations were interpreted by four of the same samplers. We quanti-
fied the correspondence between interpretations of changes in green space by 
grouping into three categories of stable (change < 10%), gain and loss (change 
>= 10%). We then calculated the balanced accuracy from a confusion matrix 
built from sampler- by- sampler interpretations (SI Appendix, Table S1). Balanced 
accuracy was defined as the average of the sensitivity (True Positive Rate) and 
specificity (True Negative Rate) and is expressed as a percentage.

Emissions Data. We used EDGARv6 global GHG (greenhouse gas) gridded 
anthropogenic emissions version 6 (63) as our source of data on anthropogenic 
GHG emissions worldwide—distributed by ECCAD- AERIS; Emissions of atmos-
pheric Compounds and Compilation of Ancillary Data -  An atmosphere Data and 
Service Centre (https://eccad3.sedoo.fr/metadata/601, accessed April 2023). 
Specifically, we collected annual emission data on NOx, PM10, and PM2.5 at a 
gridded spatial resolution of 0.1 × 0.1° from 2010 until 2018. NOx emissions D
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were used in NO2 and O3 models. We processed the data to aggregate emis-
sions from all sectors. Time series were extracted for grid cells intersecting air 
pollution–monitoring stations. Unfortunately, 2019 data were not available 
from the original EDGARv6 dataset. To estimate emissions for 2019, we used 
a linear extrapolation method to estimate individual pollutants’ emission rates 
from 2013 until 2018. This was done at each air pollution–monitoring station. 
This allowed us to estimate emissions for 2019 based on the trend observed in 
previous years.

Climate Data. To control for and explore the effects of meteorological changes on 
air pollutant concentrations, we used the ERA5- Land climate reanalysis data from 
the Copernicus Climate Change services (64). ERA5- Land is a gridded dataset 
with a 10- km resolution. We extracted monthly means of air temperature 2 m 
above the ground, total precipitation, wind speed, and relative humidity for the 
grid cells intersecting the location of air pollution stations. Monthly time series 
were then aggregated up to annual averages for each station.

Statistical Analysis. The statistical analysis took place in three parts: i) We 
used linear mixed- effects models (65) to estimate the direction and magnitude 
of the changes in air pollutant concentrations over the entire set of air quality 
stations between 2010 and 2019. Year was included as a fixed- effect, while 
air quality station was assigned as a random effect in the model to control for 

any model- specific effects. Air pollutant concentrations were log- transformed 
to ensure residuals were normally distributed. ii) To quantify the association 
between green space and air pollution concentration over time while controlling 
for the effect of emissions and climate variables, we fitted the same model struc-
ture described above, except adding green space (NDVI and tree cover), emis-
sions, and climate covariates as fixed- effects. Separate models were fit for each 
biome and each buffer zone used to aggregate green space around the stations. 
iii) The manually screened stations with extreme NDVI changes were used to 
fit mixed- effects models to test whether air pollution declines were greater at 
stations with gains in green space than at stations with losses in green space. 
Linear trends in climate variables and a categorical gain/loss in green space were 
included as fixed effects, while sampler was included as a random effect to control 
for any sampler- specific biases in interpretation of aerial imagery.

Data, Materials, and Software Availability. Code supporting the analysis: 
https://github.com/zanderVenter/greenspace- air- pollution. Previously published 
data were used for this work and are cited in the methods section.
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