
Citation: Logothetis, S.-A.;

Salamalikis, V.; Kazantzidis, A. A

Machine Learning Approach to

Retrieving Aerosol Optical Depth

Using Solar Radiation Measurements.

Remote Sens. 2024, 16, 1132. https://

doi.org/10.3390/rs16071132

Academic Editor: Manuel Antón

Received: 26 January 2024

Revised: 14 March 2024

Accepted: 22 March 2024

Published: 23 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Machine Learning Approach to Retrieving Aerosol Optical
Depth Using Solar Radiation Measurements
Stavros-Andreas Logothetis 1, Vasileios Salamalikis 2 and Andreas Kazantzidis 1,*

1 Laboratory of Atmospheric Physics, Physics Department, University of Patras, GR-26500 Patras, Greece;
logothetis_s@ac.upatras.gr

2 NILU—Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway; vsal@nilu.no
* Correspondence: akaza@upatras.gr

Abstract: Aerosol optical depth (AOD) constitutes a key parameter of aerosols, providing vital
information for quantifying the aerosol burden and air quality at global and regional levels. This
study demonstrates a machine learning strategy for retrieving AOD under cloud-free conditions
based on the synergy of machine learning algorithms (MLAs) and ground-based solar irradiance data.
The performance of the proposed methodology was investigated by applying different components
of solar irradiance. In particular, the use of direct instead of global irradiance as a model feature led to
better performance. The MLA-based AODs were compared to reference AERONET retrievals, which
encompassed RMSE values between 0.01 and 0.15, regardless of the underlying climate and aerosol
environments. Among the MLAs, artificial neural networks outperformed the other algorithms in
terms of RMSE at 54% of the measurement sites. The overall performance of MLA-based AODs
against AERONET revealed a high coefficient of determination (R2 = 0.97), MAE of 0.01, and RMSE of
0.02. Compared to satellite (MODIS) and reanalysis (MERRA-2 and CAMSRA) data, the MLA-AOD
retrievals revealed the highest accuracy at all stations. The ML-AOD retrievals have the potential to
expand and complement the AOD information in non-existing timeframes when solar irradiances
are available.

Keywords: aerosol optical depth; machine learning; aerosol retrieval; solar irradiance

1. Introduction

Aerosol particles, suspended in the atmosphere and originating from either natural
(e.g., dust and sea salt) or anthropogenic sources (e.g., nitrate and sulfate), exert a direct
effect on the Earth’s radiative balance through aerosol–radiation interaction and an indirect
effect as their role as condensation nuclei in cloud formation [1]. This interaction is contin-
gent upon the aerosol optical properties [2]. While these optical properties are crucial for
evaluating the radiative effect of aerosols [3–6], they also hold significance for precise solar
resource estimations on both regional and global scales [7].

Reference instruments for measuring solar radiation face limitations in terms of fine
temporal resolution and worldwide spatial coverage. Consequently, alternative techniques
for solar resource assessment are under scrutiny, with a primary focus on radiative transfer
modeling. An accurate assessment of solar resources necessitates a comprehensive under-
standing of aerosol properties. Integrating these properties into radiative transfer models
enables the simulation of long-term solar irradiances under cloud-free conditions [8–17].

There are two primary methods for monitoring atmospheric aerosols. The first method
involves the use of ground-based instruments, such as sun photometers. AERONET
(Aerosol Robotic NETwork) [18] is a widely recognized ground-based monitoring network
of sun photometers that has been providing highly accurate physical and optical character-
istics of aerosols at over 600 stations worldwide since 1993. The second method involves
utilizing sensors aboard satellites, such as the MODerate resolution Imaging Spectrora-
diometer (MODIS), Multi-angle Imaging Spectro-Radiometer (MISR), and Cloud-Aerosol
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Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). In general, ground-based
and satellite-based aerosol retrievals complement each other. Ground-based retrievals excel
in accuracy and temporal resolution but face limitations in spatial coverage, particularly
in desert areas, which are significant natural sources of suspended aerosol particles in
the atmosphere [19–21]. On the other hand, polar-orbiting satellites provide high spatial
resolution of aerosol optical depth (AOD) but are limited to offering more than two re-
trievals per day across a specific region. On the other hand, geostationary satellites, by
utilizing their higher temporal resolution, can present almost real-time images and capture
the dynamic AOD variations, which is very useful for monitoring events such as forest
fires [22]. However, there are two main drawbacks when using geostationary satellites for
earth observations. The first is their limited storage and high orbit altitude, which make
it challenging to record images with high spatial resolution. The second drawback is that
higher uncertainties are observed in AOD retrieval algorithms compared to polar orbit
satellites [23]. Considering the spatial and temporal constraints of both satellite and ground-
based aerosol retrievals, other techniques have recently emerged, with a predominant focus
on AOD.

Various alternative techniques for AOD retrieval reported in the literature fall into four
primary categories: (1) backward solving radiative transfer (RT) or clear-sky models using
solar radiation measurements [24–27], (2) methodologies based on sunshine duration (SD)
measurements [28–30], (3) image processing techniques using sky radiances from all-sky
imagers [31–34], and (4) machine learning (ML) and deep learning algorithms employing
various independent parameters as input features [35–39].

Salmon et al. [25] retrieved AOD across 16 regions worldwide characterized by dif-
ferent climates and aerosol properties, solving backward two clear-sky radiation models
(SMARTS and SOLIS). The model utilized inputs such as broadband direct normal irradi-
ance (DNI), meteorological data, and aerosol information such as single scattering albedo
and the Ångström exponent, resulting in an average dispersion error of approximately
0.04 for the retrieved AOD compared to AERONET. Wandji Nyamsi et al. [30] conducted a
benchmarking analysis, evaluating three distinct methodologies (linear-based, physical-
based, and hybrid) for AOD retrieval based on SD measurements over Europe. The hybrid
approach outperformed the other methods, yielding a root mean square error (RMSE)
ranging from 0.04 to 0.13 compared to AERONET. Román et al. [32] retrieved AOD at
three different wavelengths (465, 536, and 605 nm) using sky radiances from an all-sky
imager and the GRASP (Generalized Retrieval of Atmosphere and Surface Properties) [40]
code. The predicted AOD agreed well with AERONET retrievals, exhibiting a coefficient of
determination of approximately 0.87. Huttunen et al. [36] employed five ML algorithms
(MLAs: non-linear regression, artificial neural network, random forest, Gaussian process
regression, and support vector machine) to retrieve AOD. All models included global
horizontal irradiance (GHI), total column water vapor, and solar geometry as independent
parameters. The predicted AOD closely matched observations (absolute bias = 0.04–0.05),
with the Gaussian process regression and artificial neural network to outperform other ML
algorithms, revealing coefficients of determination of 0.93 and 0.92, respectively.

The primary objective of this study is to implement an ML approach for retrieving
AOD, denoted as “MLA-AOD”. The innovative aspects of this proposed approach are
succinctly outlined below:

• AOD is extracted utilizing the direct beam of solar radiation or direct normal irradiance
(DNI) derived from ground-based reference measurements.

• The impact of different solar irradiance components (GHI vs. DNI) on the retrieved
AOD is explored, underscoring the significance of selecting the most appropriate solar
irradiance component for AOD retrieval.

• The validation process includes comparisons against AERONET measurement loca-
tions with diverse climatic and aerosol characteristics.

• MLAs with different prediction mechanisms are benchmarked to identify the “optimal”
approach for retrieving AOD.
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• The MLA-AOD retrievals are compared with AOD from reanalysis products (MERRA-
2 and CAMSRA) through a comprehensive comparative analysis, showcasing the
advantages of the proposed methodology at a regional level.

The proposed MLA-AOD methodology presents an aerosol retrieval technique for
cloud-free conditions that can be used to reproduce the atmospheric aerosol burden at the
high temporal resolution of radiometric instruments. The MLA-AOD approach is evaluated
using either pyrheliometer (DNI) or pyranometer (GHI) measurements, presenting different
retrieval performances. The selection of the applied solar irradiance component relies on
the instrument availability. Even though AERONET sun photometers are established and
measured every 5–15 min, it is very common for them to present gaps of hours, days, or
weeks or to be inactive for years. This study proposes that the MLA-AOD methodology
could be used (a) to fill the AOD gaps in the AERONET sites and (b) to expand the already
existing temporal capabilities, regardless of the underlying climate and aerosol conditions.
Upgrading the current AOD capabilities is important for the evaluation of satellite products,
aerosol data assimilation, air pollution models, AOD trend analyses, climate models, and
direct aerosol radiative effect estimation.

The structure of this work is as follows: Sections 2 and 3 present details on the datasets
and the proposed methodology. Section 4 covers the results and Section 5 addresses the
summary and conclusion of this study.

2. Datasets
2.1. Ground-Based Data
2.1.1. AERONET

AERONET (https://aeronet.gsfc.nasa.gov; accessed on 12 January 2024) comprises
a network of sunphotometers, which are ground-based, passive remote sensing instru-
ments [18]. It provides high-quality data on aerosol optical and physical properties, en-
compassing over 600 stations. AERONET’s Direct Sun Algorithm (DSA) derives AOD
at seven wavelengths spanning from 340 nm to 1020 nm. DSA relies on spectral solar
irradiance measurements directly on the solar disk, captured from the CIMEL Electronique
CE318 multiwavelength sunphotometer. Besides AOD, DSAA also provides information
about total column water vapor (TCWV), based on measurements at 940 nm. AERONET,
except for DSA, applies an inverse algorithm using sky radiances in the almucantar geom-
etry to provide other aerosol properties like the single scattering albedo, aerosol volume
distribution, phase function, refractive index, etc. [41].

In this study, AOD at 550 nm (AOD550nm) is utilized to maintain consistency with
MODIS, CAMSRA, and MERRA-2 reanalysis. The AERONET AOD is interpolated at
550 nm using the Ångström law. For subsequent analyses, cloud-screened data rounded to
the nearest minute are employed, meeting quality criteria established by pre-field and post-
field calibrations (Level 2.0 data from Version 3; L2V3) [42]. The spectral AOD uncertainties
in the visible spectrum for AERONET Version 3 are reported to be 0.01 [42].

2.1.2. BSRN

The Baseline Surface Radiation Network (BSRN, https://bsrn.awi.de; accessed on
12 January 2024), is a ground-based solar radiation monitoring network that has been
measuring solar radiation at various locations worldwide since 1992 [43,44]. BSRN provides
comprehensive data on the various components of incoming solar radiation, namely global
horizontal irradiance (GHI), direct normal irradiance (DNI), and direct horizontal irradiance
(DHI). GHI refers to the total amount of shortwave radiation reaching the ground surface.
DNI is the amount of solar radiation received per unit area by a surface that is always
normal to the solar rays. DHI is the total amount of solar radiation that reaches the ground
and does not arrive on a direct path from the sun. The network delivers quality-assured
measurements at a 1 min temporal resolution. Each BSRN radiometric station employs a
first-class pyranometer and a pyrheliometer to measure GHI and DNI, respectively. The
raw observations from BSRN undergo quality control [45] using the procedures outlined in
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the SolarData R package [46]. For subsequent analysis, only the 1 min quality-assured DNI
and GHI measurements from BSRN are utilized.

2.1.3. Stations’ Characteristics

Figure 1 displays the spatial distribution of the collocated AERONET-BSRN stations
(N = 26), while Table S1 provides information about the station names and data availability.
The majority of the stations are situated in Europe and the US (Figure 1). The five distinct
colors in Figure 1 represent the Köppen–Geiger (KG) [47] climate clusters (CCs). The KG
climate classification system categorizes the world’s climate into five primary CCs based
on air temperature and precipitation amount, namely (A) Equatorial, (B) Arid, (C) Warm
Temperate, (D) Snow, and (E) Polar. The corresponding climate zone for each station is
determined using high-resolution data (100 arc sec) via the ‘kgc’ R package [48]. Each CC
is represented by at least one station, with arid and temperate climates being the most
prevalent in terms of station occurrence.
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It is significant to evaluate the proposed methodology in diverse environments to
assess its resilience to potential changes in climate and aerosol types. Previous studies
showed that the accuracy of model-based and reanalysis AOD against observations varied
climatically [49,50] and regionally [50,51]. For instance, the training of an ML algorithm to
retrieve AOD becomes more challenging in regions potentially affected by dust intrusions
or wildfires.

2.2. Reanalysis Data
2.2.1. CAMSRA

The Copernicus Atmosphere Monitoring Service Reanalysis (CAMSRA) represents
the latest global dataset for atmospheric composition, created by the European Centre for
Medium-Range Weather Forecasts (ECMWF). This dataset consists of 3-D time-consistent
fields of atmospheric composition, incorporating aerosols and various chemical species [52].
CAMSRA was generated through 4DVar data assimilation within CY42R1 of ECMWF’s
Integrated Forecast System (IFS), in which meteorological modeling is incorporated. The
4DVar analysis applies IFS dynamics and physics to produce a sequence of atmospheric
states that closely align with the available observations.
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Concerning AOD550nm, CAMSRA assimilates satellite-derived AOD550nm retrievals
obtained from MODIS Collection 6 aboard Aqua and Terra, as well as the Advanced
Along-Track Scanning Radiometer (AATSR) aboard Envisat [53]. For TCWV, CAMSRA
assimilates satellite-based infrared and microwave radiances from various sensors onboard
satellites such as AMSR-2 (GCOM-W1), AMSRE (AQUA), GMI (GPM), and TMI (TRMM),
among others. Since 2003, CAMSRA data have been provided at approximately 80 km
resolution and on a 3 h basis. In this study, AOD550nm and TCWV retrievals are acquired
through CAMSRA. The validation of CAMSRA AOD550nm against AERONET observations
revealed a global Root Mean Square Error (RMSE) of 0.144 [50]. The validation of CAMSRA
TCWV against AERONET retrievals revealed satisfactory performance with a coefficient of
determination (R2) of 0.93 and an RMSE of 0.3 cm (Figure S1).

2.2.2. MERRA-2

The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2)
is the latest global reanalysis dataset developed by the NASA Global Modeling and Assimi-
lation Office (GMAO). MERRA-2 assimilates meteorological and aerosol measurements
obtained from a variety of ground-based and satellite-based products [54–56]. This analysis
focuses on AOD550nm for intercomparison purposes. The MERRA-2 AOD550nm reanalysis
product incorporates AOD products spanning different time periods. More specifically,
before 2000, AOD550nm relies exclusively on AVHRR retrievals. Subsequently, MERRA-2
assimilates data from MODIS (onboard both Terra and Aqua, covering the period from
2000 and 2002 to the present, respectively), MISR (from 2000 to 2014), and AERONET (from
1999 to 2014). MERRA-2 data (product name: tavg1_2d_aer_Nx) are provided at a spatial
resolution of 0.5◦ × 0.625◦ on an hourly basis.

The global validation of MERRA-2 AOD550nm against AERONET data yielded an
RMSE of 0.126 [50], outperforming CAMSRA. The enhanced performance of MERRA-
2 AOD550nm is attributed to its utilization of AERONET retrievals as part of its data
assimilation methodology.

2.3. Satellite Data
MODIS

MODerate resolution Imaging Spectroradiometer (MODIS) is a passive sensor that has
been hosted on NASA’s Terra and Aqua polar satellites since 2000 and 2002, respectively.
MODIS monitors several pivotal atmospheric constituents, like aerosols [57], on a global
scale. MODIS takes advantage of its wide swath (~2330 km) to provide approximate global
coverage by making 14–15 orbits daily. The Aqua/Terra crosses the equator in a north-
bound/southbound direction at 13:30/10:30 UTC. Across dark (in the visible spectrum)
surfaces over land [58–60] or/and ocean [61–63] areas, the Deep Target algorithm (DT) is
applied, while over bright-reflecting land surfaces [64,65], including desert, semi-arid, and
urban regions, the Deep Blue algorithm (DB) is adopted.

In this study, the AOD_550_Dark_Target_Deep_Blue_Combined product from Collec-
tion 6.1 from Aqua and Terra is applied, which is a merged dataset of DB and DT algorithms.
In particular, the AOD values are merged when specific quality assurance (QA) conditions
are met (QA ≥ 1 for DT ocean, QA = 3 for DT land, and QA ≥ 2 for DB land).

3. Methodology

The proposed methodology (MLA-AOD) for retrieving AOD550nm at 1 min resolution
is illustrated in Figure 2. Various data preprocessing steps are included to increase the
performance of the MLAs.
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The applied methodology involves two primary steps: data acquisition and prepro-
cessing, which are extensively detailed in Sections 2 and 3.1. Subsequently, the preprocessed
dataset is divided into two subsets, namely the training and testing datasets. The splitting
strategy follows a 70/30 approach without using a random-sampling approach. The first
70% of the time series represents the training set and the remainder represents the test set.
Table S1 includes information about the training and testing periods for each station.

The independent (input) features undergo normalization between 0 and 1 using
the Min–Max normalization method. Five different ML algorithms (see Section 3.3 and
Appendix A) are evaluated to retrieve AOD. The MLA structure is determined through
several internal parameters called hyperparameters. The optimal configuration for these
hyperparameters for each MLA is determined through a randomized search procedure dur-
ing training. The full cartesian hyperparameter space is given in Table S2. The randomized
search involves a 10-fold cross-validation process, with MSE serving as the fitness func-
tion. For each random hyperparameter set, the data are randomly divided into 10 roughly
equal subsamples. Then, at each iteration, one of those 10 subsamples is retained as the
“validation” dataset for MLA evaluation, and the 10-1 subsamples train the ML model.
The MSE scores retrieved through the 10 iterations are averaged to retrieve a total score
which is characteristic for each hyperparameter set. This process is repeated 100 times.
The “optimal” hyperparameter combination for each MLA is determined based on the
minimum of total scores. The MLA-AOD methodology (Figure 2) is applied for each
collocated AERONET-BSRN station (see Section 2.1.3).

3.1. Data Preprocessing

The raw data obtained from ground-based measurements are cloud-screened to isolate
clear sky conditions. Although L2V3 AERONET retrievals are described as cloud-screened,
the temporal merging of AERONET and BSRN data may introduce cloud-contaminated
cases, attributed to the smaller aperture of sun photometers compared to pyrheliome-
ters [25]. To ensure clear-sky conditions, two distinct filters were applied—one for DNI
and one for GHI. Concerning DNI, within one hour around each BSRN measurement,
the standard deviation is calculated. If it is above 20% of the corresponding BSRN DNI
measurement, the data point is detected as cloudy and removed [25]. In addition, even
though the sun’s disk could be cloudless, the rest of the sky can contain sparse clouds that
affect the GHI measurements. Therefore, to avoid possible cloud contamination, the Reno
and Hansen clear-sky detection methodology [66] is applied to the GHI measurements.
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This method is preferred here over other published methodologies because it relies on
periods of time. In particular, the Reno and Hansen clear-sky detection methodology [66] is
applied on time windows (here, 10 min) of 1 min temporal resolution. If at least one minute
is assigned as cloudy, the whole window is flagged as cloudy and eliminated from the anal-
ysis. By applying the filters for GHI and DNI described above, the cloudy solar irradiance
measurements are unlikely to be found in the used data. Subsequently, the cloudless solar
irradiance measurements are synchronized with AERONET 1 min retrievals.

Moreover, the reanalysis data (TCWV and AOD550nm) are extracted at the ground-
based stations through nearest-neighbor interpolation. The 3-hourly TCWV from CAMSRA
is linearly interpolated at 1 min temporal resolution, aligning with the AERONET and
BSRN datasets.

For validation purposes, both MLA-AOD based and AERONET AODs are temporally
aggregated to match the resolution of the reanalysis and satellite products. Given that
MERRA-2 hourly data are available at half-hour intervals (e.g., 00:30, 01:30, etc.), the
ground observations are averaged over ±30 min intervals, centered on the MERRA-2
timestamps. On the other hand, CAMSRA provides data with a 3 h resolution (e.g., 00:00,
03:00, etc.). In this case, the ground-based data are represented as 90 min averages, centered
on the CAMSRA 3 h intervals. Regarding the satellite data, the MODIS AODs are spatially
averaged if at least one measurement resides within a circle area of 25 km around the
AERONET station. Then, the spatially averaged AODs are temporally averaged when at
least one of the AERONET measurements falls within a time window of 2 h around the
satellite overpass time.

Another significant point in validation studies involves addressing elevation differ-
ences between ground-based and reanalysis datasets [50]. To mitigate these discrepancies,
the reanalysis AOD is adjusted to the station elevation using the scale-height correction of
Gueymard and Yang [50].

In addition, any unrealistic AERONET AOD retrievals (AOD550nm < 0) are eliminated
for the subsequent analysis. Finally, the proposed methodology is applied using data
for a 15-year period (during 2004–2019). The data period is related to the station’s data
availability. Finally, for validation against reanalysis, only stations with at least a minimum
of 100 (3 h) CAMSRA and 300 (1 h) MERRA-2 records are retained.

3.2. Input Parameters

The direct and global clearness indexes are calculated using Equations (1) and (2),
respectively,

ktdir =
DNI
E0

(1)

ktglob =
GHI
E0

(2)

where E0 is the received irradiance on a horizontal plane at the top of the atmosphere. The
optical air mass is calculated based on Kasten and Young’s [67] formula, using Equation (3),

m = (P/P0)/
[
cos(SZA) + 0.50572·(SZA + 6.07995)−1.6364] (3)

where P and P0 are the pressure level at the station’s elevation and sea level, respectively,
while SZA corresponds to the solar zenith angle. The TCWV in cm is derived through the
CAMSRA (see Section 2.2.1).

The retrieval of AOD through remote sensing always requires information about the
solar geometry and amount of the non-aerosol atmospheric constituents. For example, the
AERONET retrieval methodology relies on Beer–Lambert–Bouguer law, considering the
impact of solar geometry and TCWV [18,42]. In addition, solar geometry is considered
when the actual and estimated reflectances are compared through AOD retrieval from
satellite measurements [68]. In the proposed methodology, two different solar irradiance
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components were applied, presenting different levels of alteration with variations in aerosol
burden, solar geometry, and TCWV.

Figure 3 depicts the influence of AOD550nm on DNI and GHI under various SZA
(Figure 3a) and TCWV (Figure 3b) cases. The solar irradiance simulations were performed
via the RTM LibRadtran package [69,70]. DNI is apparent more sensitive than GHI as
AOD550nm increases, which is consistent with the study conducted by Ruiz-Arias and
Gueymard [71], becoming a very influential parameter for feeding the MLAs. Setting a
constant water content (Figure 3a), the solar irradiance drops substantially as SZA increases.
For instance, for SZA of 10◦ (70◦), the DNI decreases from ~1000 Wm−2 (~300 Wm−2) to
~350 Wm−2 (~10 Wm−2) at higher AOD550nm (Figure 3a). Therefore, it is essential to include
information on solar geometry in MLAs. For example, if a DNI of 600 Wm−2 is considered
(Figure 3a, under constant TCWL level), this value can be simulated from the RTM from
various AOD values varying from 0.02 (for SZA = 50◦) to 0.80 (for SZA = 10◦). Based
on Figure 3b, TCWV affects DNI to a lesser extent than SZA. For instance, if DNI equals
600 Wm−2, without knowing TCWV, the AOD550nm ranges from 0.4 (for TCWV = 4 cm) to
0.75 (for TCWV = 0 cm). Therefore, clear-sky solar irradiance is predominantly influenced
by solar geometry, aerosols, and water vapor. Therefore, all three variables jointly provide
essential information for retrieving AOD550nm.
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Figure 3. Global horizontal (GHI) and direct normal (DNI) irradiance vs. AOD550nm for different
(a) solar zenith angle (SZA) and (b) total column water vapor (TCWV) cases. The solid and dashed
lines correspond to GHI and DNI. In the radiative transfer simulations, total column ozone (O3),
single scattering albedo (SSA), and the Ångström exponent (a) are taken as equal to 330 D.U., 0.95,
and 1.3, respectively.

3.3. Machine Learning Algorithms

In this study, five machine learning models with different prediction mechanisms,
including linear, distance-based, and tree-based approaches, are utilized. This setup es-
tablishes a benchmarking task aimed at evaluating and comparing the effectiveness of
these ML algorithms in simulating AOD. The five MLAs used in this study are Light Gradi-
ent Boosting Machine (LGBM: tree-based), Random Forest (RF: tree-based), Multivariate
Adaptive Regression Splines (MARS: linear-based), K-Nearest Neighbors (KNN: distance
based), and Artificial Neural Network (ANN: linear based). For the sake of brevity, a
comprehensive description of each MLA is presented in Appendix A.

4. Results
4.1. Direct Normal Irradiance vs. Global Horizontal Irradiance as Model Input

This sub-section investigates the performance of the applied methodology using
various ML models in terms of the direct and global clearness index. Two distinct scenarios
are examined: Scenario 1 considers the three input parameters (see Section 3.2), using
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the ktdir as a solar irradiance component. Conversely, in Scenario 2, ktdir is substituted
by ktglob. Figure 4 depicts the mean absolute error (MAE) and the relative MAE between
Scenario 1 and 2, using solely the retrievals of the “optimal” MLA, compared to AERONET
measurements. More specifically, the “optimal” MLA is jointly assessed using the MAE,
root mean square error (RMSE), and correlation coefficient (R) (Figure S2), assuming an
equal contribution for each statistical metric. The “best” MLA at each station is presented
in Table S1. The linear correlation between MLA-AOD and AERONET individually for
each station per KG climate class is depicted in Figures S3–S7.
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values for ANN (14/26), followed by MARS (8/26) and RF (4/26). Similar results are 

Figure 4. (a) Mean absolute error (MAE) and (b) relative MAE between MLA-AOD and AERONET
AOD for Scenario 1 (ktdir) and Scenario 2 (ktglob). For the MLA-AOD, the “optimal” algorithm is
applied. The horizontal lines separate the stations based on the KG classes (A = Equatorial, B = Arid,
C = Warm Temperate, D = Snow, and E = Polar).

The selection of solar irradiance type as an input feature significantly affects the
model performance. Scenario 1 reveals the optimal model performance as depicted in
Figure 4. The MAE (relative MAE) values ranges are 0.007–0.037 (7.9–35.9%) and 0.018–0.64
(18.1–66.3%) for Scenario 1 and 2, respectively, with the corresponding metrics for each
station and Scenario 2 being approximately twice as high. In terms of R, Scenario 1
consistently outperforms Scenario 2, extending from 0.50 to 0.99 (Figure S2). Both scenarios
show that the highest RMSEs are recorded for XIA. This can be attributed to the high
aerosol variability (Figure S4) in that area due to the high air pollution levels due to local
fossil fuel burning from automobiles, the transported polluted plumes from nearby regions,
and the transport of dust particles [72]. Despite the relatively high RMSE values in XIA,
the relative errors are lower than 10%. Similar results were observed for other stations with
high AOD variability such as TAM and SBO (Figure S4).

The difference in the observed performance between the two scenarios is primarily
attributed to the impact of aerosol load on GHI and DNI. As shown in Section 3.2 and pre-
vious studies [71,73], DNI is highly sensitive to aerosol burden improving the performance
of MLAs when it is used as an input parameter.

The performance among MLAs is quite similar at each station, highlighting the model’s
versatility (Figure 5 and Figure S2). Nevertheless, for both scenarios, ANN shows the
highest number of appearances (Figure S2). For Scenario 1, the majority of the stations
had the lowest MAE (Figure 5) values for ANN (12/26), followed by MARS (6/26) and
LGBM (5/26). Regarding RMSE (Figure S2c), again, most of the stations recorded their
lowest values for ANN (14/26), followed by MARS (8/26) and RF (4/26). Similar results
are revealed for the stations in Scenario 2, with ANN being the MLA with the lowest values
either for MAE or RMSE (Figure S2). Altogether, ANN and MARS are the most frequently
“optimal” MLAs with the most appearances (22 out of 26 of the stations). The following
sections consider the input parameters from Scenario 1 (the direct beam solar irradiance
showed greater performance against GHI) and the “optimal” MLA.
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An interesting finding of the presented methodology is the adequate performance
of MLAs at various climates, regions, and aerosol types (Figures 4 and S2). For exam-
ple, at Tamanrasset (TAM) station, located in Southern Algeria, the main aerosol com-
position consists of mineral dust particles originating from the Sahara Desert, with a
relatively high average AOD over time (here, AOD550nm = 0.17) [74,75]. Those aerosol
particles are quite absorbing. Although the applied methodology is blind regarding the
aerosol size or absorptivity, it can retrieve AOD550nm with reasonable accuracy (Scenario 1;
MAE = 0.015–0.037, R = 0.95–0.99). On the other hand, Carpentras, France (CAR), is placed
near industrial and urban areas with fine-mode particles as the primary aerosol size. Ac-
cording to Logothetis et al. [75], CAR is mainly affected by fine-absorbing (black carbon)
and non-absorbing (sulfate and nitrate) particles. The applied methodology proved to be
adequate for accurately retrieving AOD550nm (Scenario 1; MAE = 0.007–0.011, R = 0.97–0.98)
over CAR.

MLA-AOD retrieval performance is also investigated for stations with mixed aerosol
conditions, including both fine and coarse aerosol modes. For example, Sede Boker (SBO),
Israel, is frequently affected by mineral dust particles emitted by nearby desert areas and
fine-mode absorbing aerosols from local sources [75]. The relevant errors in AOD550nm
range from 0.018 to 0.021 (Figure 5) and the correlation coefficient ranges from 0.94 to 0.96
for the various MLAs in Scenario 1 (Figure S2).

The overall performance of MLA-AOD retrievals, including the “optimal” MLA and
Scenario 1, is investigated against AERONET in Figure 6. MLAs document a high coefficient
of determination (R2 = 0.97), MAE of 0.01, and RMSE of 0.02 (Figure 6), highlighting the
adequate performance of MLA-AOD methodology compared to AERONET. The majority
of the AOD values were lower than 0.5, with the MLA-AOD performance being adequate
(see the second plot in Figure 6). For high AOD values (>0.5), the MLA-AOD retrievals
have the tendency to underestimate the AERONET measurements.

4.2. The Effect of Aerosol Properties on MLAs Retrieval Performance

The relationship between the differences of the MLA-AOD and observed AOD and
the AOD magnitude is investigated (Figure 7). More specifically, the error is drawn against
various AOD bins based on AERONET observations (Figure 1).

Based on Figure 7a, the ML-based retrievals encompass higher deviations at higher
AOD550nm. For AOD550nm lower than 0.4, the mean differences are lower than 0.02 regard-
less of the underlying climate conditions. The bin frequency at each CC for AOD550nm < 0.4
is relatively high, including at least 1000 observations. Within high AOD550nm ranges
(>0.4), the deviations of ML estimations are relatively low (between ±0.05), highlighting
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the model’s high accuracy for extreme AOD550nm values. In addition, for high AOD550nm
ranges), the MLA-AOD revealed the tendency to underestimate the AERONET AOD. As
expected, the frequency of AOD550nm at high aerosol classes is low, since high AOD550nm
conditions are found in or close to deserts and heavy pollution areas. Additionally, the
station density is low in the equatorial and polar climate clusters.
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The relative differences, using the AERONET AOD as a skill reference, are calculated
to investigate the relationship between the AOD550nm deviations and their magnitudes
(Figure 7b). For all AOD550nm cases, the relative differences are within 0.20 (Figure 7b). The
relatively high documented variability at high AOD550nm bins (Figure 7a) is reduced when
relative differences are used (Figure 7b).

Based on the discussion above, MLAs seem to accurately reproduce the observed
AOD in regions with different aerosol characteristics, even if information about the type,
size, and absorptivity is absent. The dependency of the MLA-AOD retrieval performance
on aerosol properties indicators of aerosol size (a440–870nm) and absorptivity (SSA440nm) is
investigated (Figure 8) by calculating the error between the MLA-AOD and AERONET
AOD within specific a440–870nm and SSA440nm bins based on AERONET observations. It is
worth mentioning that aerosol properties are not incorporated as independent parameters
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in the MLA-AOD, since the data availability for SSA is limited in the AERONET sites, and
also to keep the MLAs as simple as possible. Regarding aerosol size (Figure 8a), the mean
differences are lower than 0.02 regardless of the a440–870nm bin. Relatively higher variability
and mean error are observed for coarse (a440–870nm < 0.4) and fine particles (a440–870nm > 2.0),
respectively. Regarding aerosol absorptivity (Figure 8b), the mean differences are also lower
than 0.02 regardless of the SSA440nm values. A relatively higher mean error is observed for
highly absorbing aerosols (SSA440nm ≤ 0.85).
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tween 440 and 870 nm (a440–870nm) and (b) single scattering albedo at 440 nm (SSA440nm). The number
of AERONET a440–870nm and SSA440nm retrievals were equivalent to 272,998 and 450, respectively.

Nevertheless, the incorporation of secondary parameters (e.g., single scattering albedo)
regarding aerosols into the MLA design could increase the performance of MLA. However,
the limited availability of this type of aerosol information supports the decision to evalu-
ate simple MLA with easily found independent predictors such as GHI or DNI, TCWV,
and SZA.

4.3. MLA-AOD vs. MODIS

In this section, a comparative analysis between the MLA-AOD and MODIS AOD
(both Terra and Aqua) is performed. As described in Section 4.1, only the “best” MLA for
each station is used for intercomparison purposes. Figure 9 depicts the RMSE values for
the MODIS and MLA-AOD (for Scenario 1, see Section 4.1) against AERONET data. The
MLA-AOD outperform MODIS at nearly all stations (except BAR). MODIS RMSEs vary
between 0.03 (BAR) and 0.18 (SBO) (Figure 9). Regarding MLA-AOD, RMSE ranges from
0.01 (CAR) to 0.06 (XIA) for the MLA AOD550nm.
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are almost identical to AERONET measurements. For the XIA station (Figure S8b), the 
AOD variability in March 2015 was between 0.2 and 1.3. Again, all products follow the 
daily AOD pattern, but retrievals from the proposed methodology are more accurate, with 
MODIS having the tendency to overestimate the AERONET measurements. Similar 
results are observed at the other stations (Figure S8c–f), revealing that the MLA-AOD 
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The MLA-AOD and MODIS are linearly compared against AERONET in Figure 10.
MLA-AOD documents a high coefficient of determination (R2 = 0.98) and RMSE of 0.02
(Figure 10), while the MODIS Aqua and Terra datasets reveal lower R2 (0.70) and higher
RMSE (0.1) values (Figure 10). The MAE values were 0.02 and 0.07 for MLA-AOD and
MODIS, respectively. The comparison between the proposed methodology and MODIS
AOD revealed the adequate performance of the MLA-AOD methodology.
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Figure S8 presents the daily variability of AERONET, ML-AOD, and MODIS AOD550nm
for specific months and stations. For the TAM station (Figure S8a), all three AOD products
have the same pattern for all days in May 2015. The MODIS performance in this case is ad-
equate. Nevertheless, the MLA-AOD provides very accurate predictions, which are almost
identical to AERONET measurements. For the XIA station (Figure S8b), the AOD variability
in March 2015 was between 0.2 and 1.3. Again, all products follow the daily AOD pattern,
but retrievals from the proposed methodology are more accurate, with MODIS having the
tendency to overestimate the AERONET measurements. Similar results are observed at the
other stations (Figure S8c–f), revealing that the MLA-AOD methodology captures the daily
variability of AERONET measurements against MODIS with higher accuracy.

4.4. MLA-AOD vs. Reanalysis Products

Globally, the primary source of aerosol properties originates from spaceborne remote
sensing instruments (e.g., MODIS in the previous section). However, aerosol proper-
ties can be obtained through aerosol reanalysis datasets at a good temporal resolution.
AOD550nm from MLAs is compared against MERRA-2 and CAMSRA products. As shown
in Section 4.1, the “best” MLA for each station is selected for intercomparison purposes.

Figure 11 illustrates the results obtained for each reanalysis dataset and the applied
methodology (for Scenario 1, see Section 4.1 against AERONET data. The MLA-AOD
outperform MERRA and CAMSRA at all stations and climate types. Regarding MERRA-2,
RMSE varies between 0.03 (SMS) and 0.3 (XIA) (orange bars in Figure 11). Accordingly,
RMSE ranges from 0.01 (CAR) to 0.1 (XIA) for the MLA AOD550 (blue bars in Figure 11).
CAMSRA RMSE values lie within 0.04 (SMS) and 0.24 (XIA), providing higher deviations
than MERRA-2 in 23 out of 27 stations. It is worth mentioning that MLA-AOD follows
the error patterns of the reanalysis dataset but with significantly lower magnitudes. In the
majority of the stations, the MLA-AOD approach reveals RMSE values 2–3 times lower
than reanalysis datasets compared to AERONET retrievals.
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horizontal lines separate the stations based on the KG classes (A = Equatorial, B = Arid, C = Warm
Temperate, D = Snow, and E = Polar).

The former findings are consistent with Gueymard and Yang’s [50] study. As they
reported, the greater performance of MERRA-2 against CAMSRA can be attributed to the
different assimilated remote sensing datasets. Apart from the data derived from spaceborne
instruments, MERRA-2 also assimilates the AERONET measurements during 1999–2014.
The reanalysis and MLA-AOD are compared against AERONET in Figure 12. All stations
are used independently based on their climate type. MLAs document a high coefficient
of determination (R2 = 0.97) and RMSE of 0.02 (Figure 12), while the reanalysis datasets
reveal lower R2 (MERRA-2 = 0.72, CAMSRA = 0.70) and higher RMSE (MERRA-2 = 0.07,
CAMSRA = 0.09) values (Figure 12).
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The black dashed line is the identical line and the red solid line corresponds to the linear regression
fit. On each plot, a second plot is presented, zoomed in for AOD values ranging between 0 and 0.5.

Consequently, the presented findings verify that MLAs have the potential to retrieve
AOD from DNI, being unaware of any other aerosol characteristics during the observation
period, resulting in more accurate data than those provided by CAMSRA or MERRA-2.

5. Summary and Conclusions

In this study, a machine learning-based approach (MLA-AOD) is evaluated to estimate
AOD at 550 nm using solar irradiance data from ground-based observations, water vapor
column (taken from the CAMS reanalysis dataset) and solar geometry. The data are
imported into five MLAs with different theoretical prediction mechanisms.

Sensitivity analysis between GHI and DNI is conducted to interpret which solar
component (GHI and DNI) is the most appropriate for AOD predictions. The algorithms’
performance provides errors up to two times lower when DNI is used against GHI. Among
the MLAs, the ANN provided the highest retrieval performance at most stations. The
MLA-AOD methodology performance is also investigated under various climates. For low
(<0.4) AOD values, all climate classes showed errors around 0.02, while for higher AOD
records, the respective biases slightly increased, tending to underestimate the AERONET
AOD. Overall, the MLA-AOD methodology documented a high R2 = 0.97, MAE of 0.01, and
RMSE of 0.02 compared to AERONET. In addition, MLA-AOD retrievals were accurate in
regions with different aerosol optical characteristics, even if information about the type, size,
and absorptivity was absent during the model training. The proposed methodology was
compared to MODIS AOD, outperforming the satellite data at nearly all stations. The MLA-
AOD retrievals were also compared to MERRA-2 and CAMSRA reanalysis products. At all
sites, the MLA-AOD outperformed reanalysis data, reaching R2 = 0.97 and an RMSE = 0.02.

Considering the great performance of MLAs when reproducing AOD, the results of
the proposed methodology could be used to fill and extend either the existing or missing
AOD time series derived from ground-based, satellite, and reanalysis datasets emerging an
alternative and promising technique for AOD retrieval. Moreover, MLA-AOD values can
be used in numerous scientific disciplines, including radiative transfer modeling, aerosol
climatology, climate change, as well as air pollution applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs16071132/s1, Table S1: Information about the BSRN and AERONET
stations’ names, BSRN stations’ acronym, location, train and test period, data availability (at 1 min
resolution) and machine learning algorithm with the highest performance; Table S2: Hyperparameters
that are tuned during the training of machine learning algorithms; Figure S1: Linear correlation
between CAMS and AERONET total column water vapor retrievals; Figure S2: Statistical indices
(MAE, RMSE and R) for Scenario 1 (a, c, e) and Scenario 2 (b, d, f) for each machine learning algorithm
(MLA). The horizontal lines separate the stations based on the KG classes. The MLA with the best
performance is added above each station; Figure S3: Linear correlation between ML-AOD and
AERONET AOD for the stations in Equatorial (A) KG climate class; Figure S4: Linear correlation
between ML-AOD and AERONET AOD for the stations in Arid (B) KG climate class; Figure S5:
Linear correlation between ML-AOD and AERONET AOD for the stations in Warm temperate (C) KG
climate class; Figure S6: Linear correlation between ML-AOD and AERONET AOD for the stations in
Snow (D) KG climate class; Figure S7: Linear correlation between ML-AOD and AERONET AOD for
the stations in Polar (E) KG climate class; Figure S8: AERONET, ML-AOD, and MODIS AOD550nm
daily variability for specific months at (a) TAM, (b) XIA, (c) CAR, (d) TOR, (e) DAR, and (f) BOS sites.
The second y-axis shows the daily variability of a440–870nm.

https://www.mdpi.com/article/10.3390/rs16071132/s1
https://www.mdpi.com/article/10.3390/rs16071132/s1
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Appendix A

This appendix presents the MLAs in more detail, aiming to describe the main ideas
behind the algorithms.

• Light Gradient Boosting Machine (LGBM)

Gradient Boosting Machines (GBM) [76] constitute an ensemble technique that applies
iteratively multiple weak learners (decision trees) in an additive and sequential form. GBM
can be used either for regression or classification. More specifically, GBM is based on
boosting techniques where the basic idea is to combine weak learners to build a strong
learner that can efficiently predict unknown (testing) data. In this study, a modified GBM
algorithm is used: the LGBM [77]. The main difference between LGBM and traditional
GBM algorithm is how the decision trees are processed. LGBM uses leaf-wise tree growth
instead of depth-wise tree growth (applied by GBM), leading to faster training, lower use
of memory, better accuracy, and easy handling of large datasets.

• Random Forest (RF)

The RF algorithm forms an ensemble technique, combining the outputs from multiple
decision trees [78]. RF differs compared to GBM, since the individual trees are handled
using a bagging method. The predictions are configured for regression by the weighted
ensemble mean of all decision tree outputs. Multiple decision trees are used as base learning
models, created with bootstrapping, including a random set of training data and features
for each tree node.

• Multivariate Adaptive Regression Splines (MARS)

MARS is a non-parametric statistical technique that can model either linear or nonlinear-
related variables onto a multidimensional space to estimate a target output [79]. During
training, the data are divided into piecewise linear segments (splines) of differing gradi-

https://aeronet.gsfc.nasa.gov
https://bsrn.awi.de
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=overview
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=overview
https://disc.gsfc.nasa.gov/
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ents [80]. MARS forms a linear combination of basis functions (linear, Hinge, etc.). More
specifically, MARS includes two critical stages. First, a stepwise search of the possible terms
that minimizes an error loss function is performed in the forward pass. The former stage
often leads to quite a complex and overfitted model. Then, the backward phase follows to
improve the model performance by pruning the less significant terms. The pruning process
is based on minimizing the generalized cross-validation (GCV) score to select the optimal
model configurations.

• K-Nearest Neighbors (KNN)

KNN constitutes an algorithm that is widely used in classification tasks. Neverthe-
less, KNN can also be used efficiently for regression. The core concept behind the KNN
algorithm is to group the training data into coherent clusters (neighbors) that can be easily
identified from the testing dataset. The Euclidean distance between the point and other
already known classified points is calculated to determine a given point’s nearest neighbor.
The selection of the optimal number of nearest neighbors controls the models’ complexity
and performance, making the KNN one of the simplest MLAs.

• Artificial Neural Network (ANN)

ANN is generally a sequence of interacting layers consisting of neurons (nodes). There
are several types of ANNs currently used in the ML community. A fully connected neural
network [81] is selected for the presented study. The implemented ANN architecture
includes one input, one output layer, and an intermediate layer consisting of two hidden
layers. The neurons of the input layer are equal to the number of input features (three,
here) while for the output layer the neurons correspond to the number of outputs (one,
here). The number of hidden units included in the two hidden layers is based on the best
model accuracy. The activation function between the input layer and the two hidden layers
is the Rectified Linear Unit (ReLU), with a linear activation function between the second
hidden layer and the output layer. The mean square error (MSE) is preferred as the loss
function, and the AdaDelta (Adam) [82] performs the stochastic gradient-descent process
for updating the model’s weights at each iteration during training.

Table A1 summarizes the functions and libraries–packages used to run MLAs.

Table A1. Packages along with their functions for the implemented machine learning algorithms.

MLA Package Function

LGBM LightGBM Python lgb
RF scikit–learn Python RandomForestRegressor

MARS py-earth Python Earth
KNN scikit–learn Python KNeighborsRegressor
ANN Keras Application Programming Interface [83]
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