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A B S T R A C T   

This study investigates the impact of meteorological variations on the long-term patterns of PM2.5 in Delhi from 
2007 to 2022 using the AirGAM 2022r1 model. Generalized Additive Modeling was employed to analyze 
meteorology-adjusted (removing the influence of inter-annual variations in meteorology) and unadjusted trends 
(trends without considering meteorology) while addressing auto-correlation. PM2.5 levels showed a modest 
decline of 14 μg m− 3 unadjusted and 18 μg m− 3 meteorology-adjusted over the study period. Meteorological 
conditions and time factors significantly influenced trends. Temperature, wind speed, wind direction, humidity, 
boundary layer height, medium-height cloud cover, precipitation, and time variables including day-of-week, day- 
of-year, and overall time, were used as GAM model inputs. The model accounted for 55% of PM2.5 variability 
(adjusted R-squared = 0.55). Day-of-week and medium-height cloud cover were non-significant, while other 
covariates were significant (p < 0.05), except for precipitation (p < 0.1). Wind speed (F-value: 98) showed the 
strongest correlation, followed by day-of-year (61), years (41.8), planetary boundary layer height (13.7), and 
temperature (13). Meteorological parameters exhibited significant long-term trends, except for temperature. 
Inter-annual meteorological variations minimally affected PM2.5 trends. The model had a Pearson correlation of 
0.72 with observed PM2.5, underestimating episodic peaks due to long-range transport. Partial dependencies 
revealed a non-linear PM2.5 relationship with meteorology. Break-point detection identified two potential 
breakpoints in PM2.5 time series. The first, on October 1, 2010, saw a significant increase from 103.4 to 162.6 μg 
m− 3, potentially due to long-range transport. Comparing meteorology-adjusted and unadjusted trends can aid 
policymakers in understanding pollution change causes.   

1. Introduction 

Delhi, one of the world’s megacities, has been plagued with severe 
particulate pollution for decades. It is earning notoriety as a pollution 
hotspot primarily due to the critical concentration level of PM2.5 
(Worldatlas, 2018). PM2.5, a fine particulate matter with a diameter of 
2.5 μm or less, poses a multifaceted threat to human health (Lin et al., 
2018; Ma et al., 2018), climate (Liao et al., 2015), ecosystems, visibility 
(Fu et al., 2016), and overall air quality (Fuzzi et al., 2015). The 
chemical composition of particulate matter (PM) includes organic car-
bon (OC), elemental carbon (EC), and water-soluble inorganic ionic 
components (WSIC: sulfate, nitrate, chlorine, and ammonium). Over 
Delhi, the major sources of PM are the transportation sector, industries, 

dust and construction activities, and secondary aerosols. According to 
the Ministry of Earth Science (MoES) 2018 report The Automotive 
Research Association of India and The Energy and Resources Institute, 
(2018) on the new emission inventory, transport had the maximum 
contribution to the city’s PM2.5 (41%), followed by re-suspended dust 
(21.5%), industries (18.6%), and the rest (11%). The rest include 
municipal solid waste (MSW) plants, MSW open burning, crematoriums, 
the aviation sector, brick kilns, etc. Nagpure et al. (2015) reported that 
open MSW burning contributes 5–11% to Delhi’s total PM2.5 mass 
concentration. For PM2.5, Jain et al. (2021) reported biomass burning 
combined with fossil fuel combustion (29%), secondary aerosol (26%), 
soil dust combined with sodium and magnesium salt (21%), vehicular 
emissions (18%), and industrial emissions (6%) as the major sources 
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over Delhi whereas for PM10, major sources are soil dust combined with 
sodium and magnesium salt (29%), vehicular emissions (24%), sec-
ondary aerosol (20%), biomass burning combined with fossil fuel com-
bustion (19%), and industrial emissions (7%). Vehicular emissions, 
followed by biomass burning are the dominant contributors of carbo-
naceous aerosols. A study by Latha et al. (2022) showed that secondary 
aerosols contribute 15–24% to the total PM2.5. Biomass burning, 
vehicular emissions, crustal dust, and secondary aerosols are the major 
contributors to PM2.5 levels. Water soluble ions like sulfate, nitrate, 
ammonium, and chloride contributed up to 50% of the total PM2.5. A 
high correlation was observed between nitrate and sulfate ions indi-
cating their common emission source. Jain et al. (2020) reported that 
secondary inorganic aerosols account for 27% of PM2.5 concentrations 
and 21% of PM10 concentrations. The contribution of secondary sulfate 
is higher during summer and secondary nitrate is higher during winter. 
Traffic emissions are one of the major sources of PM10 pollution and 
biomass burning is for PM2.5. 

In addition to emissions from primary and secondary sources, 
meteorological parameters are also significant driving factors in deter-
mining the concentration at all time scales by governing its dispersion, 
transport, chemical transformations, dilution, and photochemical re-
actions within the atmosphere (Jing et al., 2020; Rawat et al., 2023; 
Tella et al., 2021). These meteorological factors also underpin chemical 
reactions that impact the concentration of secondary aerosols and ozone 
(Lu et al., 2019; Zhang et al., 2015). The interplay between meteoro-
logical conditions and baseline pollution was vividly demonstrated 
during the COVID-19 pandemic, where Dhaka et al. (2020) illuminated 
how various meteorological factors impact the concentration of fine 
particulate matter concentrations. 

Long-term air quality trend analysis assumes paramount significance 
for the scientific community and policymakers and is a critical tool for 
discerning the underlying factors contributing to variations in pollutant 
concentrations. These fluctuations may stem from alterations in emis-
sion patterns, often attributable to policy interventions or meteorolog-
ical influences. To isolate these two effects and quantify the efficacy of 
pollution mitigation strategies, it is imperative to remove the influence 
of temporal trends and meteorological variations within the time series 
of pollutant concentration. Conventional trend estimation techniques, 
such as the non-parametric Mann-Kendall test (Kendall, 1975; Mann, 
1945) and the Theil-Sen slope estimator, are robust standard trend 
estimation techniques that can be employed to study trends in pollutant 
concentration. However, they cannot inherently capture the evolving 
and intricate dynamics of meteorological variables over time, which can 
wield considerable influence over long-term trends in pollutant 
concentration. 

The non-linear and complex interactions between pollutants and 
meteorology cannot be fully described by linear models. Such in-
teractions can be better addressed by advanced statistical methods like 
black-box machine learning models, regression trees, artificial neural 
networks, random forests, and generalized additive models (GAM). 
Although Machine-learning algorithms and artificial neural networks 
have high predictive power, they are complex and challenging to 
interpret (Stiglic et al., 2020). Grange et al. (2018) used a meteorolog-
ical normalization technique based on a random forest machine-learning 
algorithm to study the PM10 trends in Switzerland from 1997 to 2016. 
Using the same technique, Grange and Carslaw (2019) studied the effect 
of air quality interventions in London. GAM modelling has been exten-
sively used to study the complex and non-linear relationship between 
particulate matter (PM) and meteorology (Enayati Ahangar et al., 2021; 
Gao et al., 2023; Pearce et al., 2011). Solberg et al. (2021a) used GAM to 
study trends of air pollutants at the national level from 2005 to 2019 for 
European countries. Solberg et al. (2021b) also used GAM to study the 
impact of COVID-19 measures on NO2 in Europe in 2020. In both of 
these studies, the recent air quality trend and prediction model AirGAM 
(Walker et al., 2023) was employed. 

In the present study, AirGAM 2022r1 (Walker et al., 2023) was 

utilized to investigate the meteorological influence on long-term trends 
in PM2.5 over Delhi during 2007–2022. The current study aims to 
analyze the meteorology-adjusted and unadjusted trends in PM2.5 over 
Delhi and predict its concentrations using daily averages meteorological 
parameters as inputs. The meteorology-adjusted trends highlight the 
changes in pollutant concentration due to changes in emissions only, 
whereas unadjusted trends show the actual changes observed in the 
ambient PM2.5 concentration, considering changes in emissions, mete-
orological conditions, or both. This comparative analysis between the 
meteorology-adjusted and unadjusted trends can be used in determining 
whether the observed changes in ambient pollutant levels are influenced 
by meteorological factors or the outcome of air pollution control 
measures. 

Furthermore, our study employs break-point and break-segment 
detection techniques to identify significant transitions in the PM2.5 
time series over the 2007 to 2022 period. These breakpoints mark 
pivotal moments when notable changes in PM2.5 concentrations 
occurred. By understanding these temporal shifts, we aim to deepen our 
comprehension of the intricate interplay between PM2.5 and meteoro-
logical factors using the HYSPLIT backward air mass trajectory model. 
This knowledge is instrumental for refining our capacity to forecast air 
quality accurately and predict pollution events under varying meteo-
rological conditions. Furthermore, our research builds upon prior work 
(Chetna et al., 2022), which synthesized insights from previous studies 
on Delhi’s particle pollution trends. Together, this body of research 
contributes to a comprehensive perspective on the ever-evolving air 
quality landscape in Delhi, India, thereby facilitating informed 
decision-making and policy formulation to address air quality chal-
lenges effectively. 

2. Materials and methods 

2.1. Study area and its meteorology 

Mega city Delhi is located (28.7◦ N, 77.1◦E) in the Northern plains of 
India. It occupies an area of 1483 km2, has 18 million inhabitants (https 
://www.census2011.co.in/census/state/delhi.html), and is situated at 
an elevation of 216 m above sea level. The map in Fig. 1 shows air 
quality monitoring stations and location of the city of Delhi, India. Due 
to the absence of any nearby large water bodies, the landlocked city 
experiences a semi-arid continental climate with significant variations 
in meteorological conditions, such as dry summers (relative humidity 
(RH): 48 ± 14%) with maximum temperature at 39 ◦C, moderate tem-
perature with high humidity (71 ± 15% RH) in monsoon, moderate 
temperature (20 ± 5 ◦C) and relative humidity (67 ± 10%) in post- 
monsoon, and low temperatures up to 7 ◦C in winters. The supporting 
information Table S1 provides a season-wise statistical summary of 
PM2.5 and all meteorological parameters from 2007 to 2022, classified 
into four major seasons: winter (January-February), summer (March- 
May), monsoon (June-September), and post-monsoon (October- 
December) according to IMD classification (IMD, 2015). 

2.2. Data sources 

Trend analysis was conducted on the daily average data set, obtained 
from various sources, including Central Pollution Control Board (CPCB), 
Delhi Pollution Control Committee (DPCC), and Indian Meteorological 
Department (IMD) and the U.S. Embassy and Consulates. The surface 
measurements of ambient daily PM2.5 were obtained through the CPCB’s 
online official portal (https://app.cpcbccr.com/ccr/#/caaqm–dashboa 
rd–all/caaqm–landing). The U.S. Embassy and Consulates also record 
the hourly average mass concentrations of PM2.5 and have been avail-
able since 2013 from the Airnow website (https://www.airnow.gov/). 
PM2.5 is measured using BAM-1022 by Met One Instruments Inc., based 
on the beta attenuation principle. The details of the instrument can be 
found in the manual (MetOne, 2020). The aerosol-loaded air sample is 
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exposed to high-speed beta rays emitted from the C-14 source. The mass 
concentration of PM2.5 is measured by observing the attenuation in beta 
particles. CPCB follows accepted international protocols and standard 
operating procedures (SoPs) to disseminate air quality and meteoro-
logical data for research purposes. The calibration and maintenance of 
the instruments are accomplished according to the guidelines and reg-
ulations of the U.S. Environmental Protection Agency (U.S. EPA) (2023). 
Details of the quality assurance and quality control (QA/QC) procedures 
are discussed in CPCB (2012) and on the CPCB website https://cpcb.nic. 
in/quality–assurance–quality–control/. Due to incomplete data from 
2007 to 2022, it was impossible to conduct a trend analysis for each 
station individually. Therefore, we collected data from 37 monitoring 
stations across the city and calculated the average of all the station data 
to create a complete dataset representing the entire city. 

The hourly average gridded meteorological data from the European 
Center for Medium-Range Weather Forecast (ECMWF) ERA5 reanalysis 
(Hersbach et al., 2020) was downloaded through the open-source 
Climate Data Store website https://cds.climate.copernicus.eu/. The 
dataset has a resolution of 0.25◦ × 0.25◦, derived from the "ERA5 hourly 
data on single levels from 1940 to present" (https://doi.org/10.24381/ 
cds.adbb2d47) in the NetCDF format. We used Python’s ’xarray’ module 
to focus on Delhi, within the coordinates of 28.40–28.88 ◦N and 
76.84–77.34 ◦E, then transformed hourly data into daily, monthly, and 
yearly datasets. We acquired hourly mean data of temperature at 2 m, 
relative humidity at 2 m, wind speed and wind direction at 10 m, 
planetary boundary layer height, medium-height cloud cover and 
precipitation. 

Our study used ERA5 data because meteorological data for all 

parameters from 2007 to 2022 was unavailable at any Delhi ground 
station. However, ERA5 data correlates well, Fig. S1 in the supplement, 
with ground meteorological data (Indira Gandhi International Airport, 
IGI station) and is used in various scientific studies. T. Singh et al. (2021) 
has shown that the ERA5 reanalysis data set can reasonably capture the 
spatial pattern of rainfall climatology over the Indian sub-continent 
during the study period of 1999–2018. Similarly, Vishal and Rani, 
2022) shows near-surface (2m) air temperature estimates from Indian 
Monsoon Data Assimilation and Analysis (IMDAA) regional reanalysis 
estimates are highly correlated with ERA5 during 2000–2018 for 14 
different stations selected over India. 

2.3. GAM statistical modeling 

The AirGAM model was implemented using the R programming 
language and software (R Core Team, 2022) with the “mgcv” (Wood, 
2017), “openair” (Carslaw and Ropkins, 2012), and “sandwich” (Zeileis, 
2022) packages. Due to the flexibility of smooth functions, the GAM 
model (Hastie and Tibshirani, 1990, 2017; Wood, 2017) is a straight-
forward and efficient tool to capture the intricate non-linear relationship 
between the local meteorological parameters and pollutant concentra-
tions. The general equation of a GAM model is 

g(μi)= βo + β1(x1i)+ β2(x2i)+…+ βn (xni) + ε (1)  

where μi = E(Yi); subscript i is the day of the year, Yi is the response 
variable (daily average concentration of PM2.5); g is a link function; βo is 
a constant (the intercept); β1, β2, …., βn are the non-parametric smooth 
functions of the covariates; x1, x2, …., xn are covariates; n is the number 

Fig. 1. Map of the study area depicting the location of Delhi in India and the locations of all 37 air quality monitoring stations situated in different zones of the city. 
The city is surrounded by Uttar Pradesh on its eastern side and Haryana on its western and south-western sides. 
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of covariates; ε is the error term containing the residuals. Input meteo-
rological data set consists of air temperature at 2 m in oC (x1), wind 
speed in m s− 1 (x2), wind direction in degrees (x3), relative humidity in 
% (x4), planetary boundary layer height in m (x5), medium-height cloud 
cover in % (x6), daily total precipitation in mm day− 1 (x7). To account 
for temporal trends, including daily and seasonal variations, weekday 
and weekend effects on the emissions, the time covariates viz. day-of- 
week (x8), day-of-year (x9), and overall time (x10) were also given as a 
GAM input. Overall time (x10) represents the trend term in pollutants; it 
is continuous time in a fraction of years with 0.0 = 1 January 2007 at the 
start of the period. For PM2.5, a log-transformation is used as the link 
function in Eq. (1) so the mathematical equation for the GAM model for 
PM2.5 is given as 

log(E(Yi))= βo + β1(x1i)+ β2(x2i)+…+ β9 (x9i) + β10 (x10i) (2)  

with x1, x2, …., x10 the meteorological and time variables. The smooth 
function β10(t) corresponding to overall time (x10) in Eq. (2) represents 
the meteorology-adjusted trend. The daily average concentration of 
PM2.5 was used as a dependent or response variable (Y), and meteoro-
logical and time covariates were used as independent variables. The 
response variable has a definite probability distribution, and its ex-
pected value is μ. The link function, g(μ), links the expected value of Y to 
the covariates. The PM2.5 distribution is not Gaussian but typically 
highly skewed towards the right, so a gamma distribution and a log link 
function, g(μ) = log(μ), were chosen for such a right-skewed distribution 
(Wood, 2017) to make the residuals closer to a normal distribution. 
Cubic regression splines were used as smooth functions for all covariates 
to investigate the association between PM2.5 and meteorology. For wind 
direction, cyclic cubic splines were used. The model coefficients and 
smoothing parameters were estimated using restricted maximum like-
lihood, REML, as the fitting method. The standard and default ten basis 
functions (k = 10) were used for all meteorological and ‘day-of-year’ 
covariates, whereas k = 9 was used for the ‘years’ time covariate. The 
standard and default ten basis functions (k = 10) were used for all 
meteorological and ‘day-of-year’ and ‘years’ covariates. The ‘day--
of-week’ covariate takes values from 1 to 7, corresponding to Monday to 
Sunday, but is handled as a continuous variable using seven basis 
functions. The present method assumes that an additive combination of 
the local meteorology and the time variables without any interactions 
between them are sufficient to estimate the daily mean pollutant con-
centration. However, due to the very different nature of the meteoro-
logical seasons in Delhi, we employ a separate set of smooth functions 
for the meteorological variables for each season. For the time variables, 
including for the trend, a single smooth function covering all four sea-
sons are used. GAM performance is evaluated by standard statistical 
metrics like R2, root mean square error (RMSE), and mean bias (MB). 
Unadjusted trends are calculated by removing meteorological variables 
from GAM and keeping only the time covariates. It represents the actual 
observed trends in pollutant concentrations in ambient air. An AR (1) 
auto-regressive time series model of order one is included to handle 
autocorrelation in the model residuals. The model’s predictive power is 
evaluated using the out-of-year cross-validation method for the entire 
study period (2007–2022). 

The GAM model in AirGAM is a nonlinear regression model using 
observed concentrations (PM2.5) as response variables and daily average 
data of local meteorology and other time data as input covariates. The 
model estimates a smooth function of each covariate from these data, 
representing the nonlinear relationship between the expected concen-
tration value on each day and the corresponding meteorology and time 
data. The last covariate (β10 in Equation (2)) in the model represents the 
concentration trend term and is also estimated as a smooth function of 
total time (days) from the beginning of the analysis period. In this way, 
our model aims to discount the effect of any day-to-day time variations 
or trends in the meteorological data when estimating the concentration 
trend term, which may be considered a meteorology-adjusted trend over 

time. Thus, in our approach, there is no need to use a chemical transport 
model (CTM) or to hold the meteorology constant from the beginning of 
the analysis period. Unlike other methods, this model doesn’t assume 
that the weather conditions stay constant throughout the analysis 
period. The model does not explicitly include emissions or background 
concentrations. Instead, it aims to indirectly estimate these trends by 
addressing the complex connections between local meteorology, time, 
and PM2.5 concentrations. 

3. Results and discussion 

3.1. Overview of particle pollution in Delhi 

From 2007 to 2022, the daily average mass concentration of PM2.5 
was 122 ± 82 μg m− 3, with values ranging between 21 and 754 μg m− 3. 
In accordance with Indian NAAQS, the permissible daily and annual 
average concentrations of PM2.5 are 60 μg m− 3 and 40 μg m− 3, respec-
tively. Throughout the entire study period, the daily average PM2.5 
concentration exceeded the critical levels set by the Indian national 
standards (CPCB, 2009). The symbol ± represents the standard devia-
tion in PM2.5 values as observed in our data from 2007 to 2022. 
Seasonally, the average mass concentration of PM2.5 was 170 ± 75 μg 
m− 3 in winter, 100 ± 46 μg m− 3 in summer, 63 ± 39 μg m− 3 in the 
monsoon season, and 188 ± 90 μg m− 3 in the post-monsoon season. The 
highest concentration was observed during the post-monsoon season, 
followed by winter and summer, while the monsoon season had the 
lowest concentration. Table 1 presents the descriptive statistics of PM2.5 
and the meteorological data set during the study period. 

The season-wise statistical summary of PM2.5 and meteorological 
parameters during 2007–2022 over Delhi is given in supplement file 
Table S1. 

Yang et al. (2018) reported a fluctuating trend in PM2.5 over Delhi 
from 2014 to 2017 indicating variability in pollution levels during that 
period. Contrasting this, Sharma et al. (2018) observed non-significant 
increasing trends in organic carbon, elemental carbon, and PM10 (y =
6.785x + 194.8, R2 = 0.241) during 2010–2017 over Delhi. Their 
findings underscore the complexity of pollutants’ behavior in urban 
environments. Hammer et al. (2020) reported a rising trend in 
population-weighted mean geophysical PM2.5 values over India at the 
rate of 1.13 ± 0.15 μg m− 3 year− 1 from 1998 to 2018; 2.44 ± 0.44 μg 
m− 3 year− 1 from 2005 to 2013 period and a declining trend at the rate of 
− 0.54 ± 0.7 μg m− 3 year− 1 during 2011–2018. Such fluctuations reveal 
the dynamic nature of pollution trends over time. V. Singh et al. (2021) 
analyzed data from the U.S. Embassy and Consulate to assess the annual 
trend in PM2.5 for five Indian megacities from 2014 to 2019 and reported 
a decline in PM2.5 at a rate of 4.19 ± 1.12 μg m− 3 year− 1 for New Delhi, 
highlighting potential improvements in air quality management efforts, 
particularly notable in New Delhi. In contrast. D. Sharma and Mauzerall 
(2022) found no significant trend in PM2.5 over Delhi observed during 
the 2015–2019 period using the U S Embassy and Consulate hourly data, 
suggesting a potential stabilization or plateauing of pollution levels 
during this period. Furthermore, recent findings by S. K. Sharma et al. 
(2022) during Jan 2012–April 2021 period revealed a non-significant 
decreasing trend (R2 = 0.18) in annual PM2.5 levels but a significant 
decreasing trend in elemental carbon (EC), organic carbon (OC), and 
total carbon (TC) over Delhi, indicating potential shifts in pollutant 
composition. 

Collectively, these studies emphasize the multifaceted nature of air 
pollution trends in Delhi and India, highlighting the importance of 
continuous monitoring and targeted interventions to mitigate the 
adverse impacts of air pollution on public health and the environment. 

3.2. Meteorology-adjusted and unadjusted trends 

3.2.1. Generalized additive mixed model (GAMM) for PM2.5 
The raw auto-correlation and partial auto-correlation residuals plots 
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for a meteorology-adjusted model for PM2.5 are depicted in the LHS 
panel of Fig. 2. Significant high auto-correlation was present in the 
model with lag-1 value as the most significant. Auto-correlation function 
(ACF) values slowly decayed with an increasing time lag. To handle this, 
we used a generalized additive mixed model (GAMM) using the ‘gamm’ 
routine of the ‘mgcv’ R package (S. Wood, 2023; S. N. Wood, 2017) 
available as part of the AirGAM 2022r1 model system. This routine in-
cludes an auto-regressive order-1 AR(1) model with a one-day time lag 
for model residuals. The RHS panel of Fig. 2 clearly shows that the 
GAMM model resulted in non-significant correlations; thus, 
auto-correlation was handled efficiently. Ito et al. (2007) reported that 
PM2.5 levels on a given day are influenced by the weather conditions of 
the preceding day. In the present work, the entire analysis for the 
complete year was done using the GAMM model. R-sq. (adj) was found 
to be 0.55, thus approximately 55% of the variations in the PM2.5 con-
centration can be explained by the model covariates. Except for 
medium-height cloud cover and day-of-week, all meteorological and 
time variables were found to be statistically significant (p-value <0.05) 
for the converged PM2.5 AR(1) GAM model. It is essential to mention 
that precipitation is significant only at a 10% significance level. The 
significance of each term in a GAM summary is evaluated by the F-value 
for each smooth function, which measures how well each term explains 
the variations in the response variable. Based on the F-value, wind speed 
(F-value: 98) was the strongest covariate, followed by day-of-year (61). 
Among the meteorological variables, wind speed (F-value: 98), plane-
tary boundary layer height (13.7), and temperature (13.0) were domi-
nant. Except for wind speed, all the predictors were non-linearly 
associated with PM2.5 with an empirical degree of freedom (edf) value >

1. Section 3.3.4 contains a closer description of these non-linear re-
lations as estimated by the model. 

The meteorology-adjusted and unadjusted trends in PM2.5 during the 
study period are shown in Fig. 3. Clear seasonal variations were 
observed in PM2.5 during the 16-year-long data set. The minimum 
observed monthly average PM2.5 concentration during the study period 
was 32 μg m− 3 in August 2020, and the maximum was 294 μg m− 3 in 
November 2016. Both meteorology-adjusted and unadjusted trends 
showed overall non-linear declining trends with fluctuations. Initially, 
the meteorology-adjusted concentration decreased from 2007 (115 μg 
m− 3) to mid of 2008 (113 μg m− 3). Afterwards, it continuously increased 
up to the beginning of 2013 (155 μg m− 3). A significant decline was 
observed from 2013 until 2022 (97 μg m− 3). Overall, the trend declined 
from 115 μg m− 3 in 2007 to 97 μg m− 3 in 2022, a decrease of only 18 μg 
m− 3 during 2007–2022. It is clear from the plot that the meteorology- 
adjusted and unadjusted trends are pretty close to each other after 2015. 

Since 2015, the meteorology-adjusted and unadjusted trends have 
nearly converged, indicating minimal impact from inter-annual meteo-
rological variations on PM2.5 trends. Theil-Sen trends of meteorological 
parameters from 2015 to 2022 is shown in Fig. S5. It reveals a notable 
positive trend in relative humidity (0.31 % year− 1; 95% confidence in-
terval [0.03, 0.58], p < 0.05) and a declining trend in wind direction 
(− 8.47◦ year− 1; 95% CI [− 10.44, − 5.27], p < 0.001). However, no 
statistically significant trends were observed in other meteorological 
factors such as temperature, wind speed, planetary boundary layer 
height, and rainfall. Consequently, the marginal increase in relative 
humidity, changes in wind direction, and potential other factors appear 
to counterbalance each other’s effects, resulting in nearly identical 

Table 1 
Statistical summary for the daily mean measurements of PM2.5, temperature (Temp, oC), wind speed (WS, m s− 1), wind direction (WD, o), relative humidity (RH, %), 
medium-height cloud cover (MCC, %), and planetary boundary layer height (PBLH, m).  

(2007–2022) PM2.5 (μg m− 3) Temp (oC) Wind speed (m s− 1) Wind direction (degree) RH (%) MCC (%) PBLH (m) 

Average 122 25 2 220 65 12 514 
St. Dev 82 7 1 106 16 16 254 
Median 102 27 2 279 68 6 444 
Max 754 40 7 360 99 100 1483 
Min 21 6 0 0 21 0 114  

Fig. 2. LHS panel shows raw auto-correlation function (ACF), and partial auto-correlation function plots and the RHS panel shows GAMM standardised auto- 
correlation and partial auto-correlation plots for PM2.5 for the meteorology-adjusted model error residuals at Delhi for 2007–2022. 

Chetna et al.                                                                                                                                                                                                                                    



Atmospheric Environment: X 22 (2024) 100255

6

meteorology-adjusted and unadjusted PM2.5 trends since 2015. 
The unadjusted component started rising from 2007 (112 μg m− 3) till 

the end of 2012 (149 μg m− 3); afterwards, it continuously showed a 
downtrend up to the end of 2022 (98 μg m− 3). Overall, the unadjusted 
trend declined from 112 μg m− 3 in 2007 to 98 μg m− 3 in 2022, a 
decrease of only 14 μg m− 3 during 2007–2022. Overall, the inter-annual 

meteorological variability has not considerably affected the long-term 
trends in PM2.5 over Delhi during 2007–2022. In Fig. 3, blue and red 
circles show the observed and GAM-predicted monthly average PM2.5 
concentrations, respectively. The concentrations are either under-
estimated or overestimated probably because the PM2.5 peaks are 
associated with the long-range transport of pollution, which is not 

Fig. 3. Observed (blue curve) and predicted (red curve) monthly average PM2.5 concentrations in Delhi during 2007–2022. The meteorology-adjusted and unad-
justed smooth trend curves are shown in green and orange colors, respectively. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 4. Panel a) displays a smooth-trend plot of ambient PM2.5, while panel c) represents the de-seasonalized PM2.5. Panel b) shows the inter-annual Theil-Sen linear 
trends in ambient PM2.5, while panel d) represents the same for de-seasonalized PM2.5. The monthly mean concentration is shown by blue circles. A trend estimate is 
represented by a red line, while a dashed red line illustrates the 95% confidence interval (CI) for the trend, calculated using resampling methods. The overall trend is 
displayed in the top-left corner, expressed in μg m− 3 year− 1, with the corresponding 95% CI for the slope or trend indicated in square brackets. Significance levels are 
denoted by symbols: *** (p < 0.001), ** (p < 0.01), * (p < 0.05), and + (p < 0.1). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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correlated with the local meteorology of the region and hence cannot be 
captured by the GAM. A concurvity analysis was also performed, and we 
found that all the covariates were reasonably independent. Fig. S2 in the 
supplement illustrates the monthly median PM2.5 values at Delhi from 
2007 to 2022, represented by blue and red colors for the observed and 
GAM predicted values, respectively. As for the mean, the figure reveals a 
lack of data coverage prior to 2011, and it is evident that the GAM model 
occasionally underestimates or overestimates the PM2.5 values. Our 
study incorporates data from the COVID-19 period. However, Theil-Sen 
and GAM smooth-trend analyses (not shown) demonstrated a downward 
trend in PM2.5 levels even with excluding the COVID-19 period, but with 
a reduced magnitude. Furthermore, using GAM as a prediction tool, the 
observed and GAM-predicted PM2.5 concentration are in good agree-
ment for lockdown years 2020 and 2021. This decline in particular 
pollution can be attributed to the government’s various initiatives and 
mitigation measures taken to tackle air pollution in Delhi-NCR, as 
detailed in Table S2 of the supplement. 

3.2.2. Theil-Sen and GAM smooth-trend analysis 
The openair R package (Carslaw and Ropkins, 2012) was used to 

analyze trends in PM2.5 levels over Delhi from 2007 to 2022. The 
Theil-Sen function (Sen, 1968; Theil, 1950) implements Theil-Sen 
regression analysis and provides the non-parametric measurements of 
trends (Ropkins and Carslaw, 2012). Chetna et al. (2022) used it to es-
timate the trends in PM2.5 over Delhi during 2007–2021. 

The Theil-Sen linear trend is calculated using monthly mean con-
centrations, denoted in Fig. 4 by the blue circles. The solid red line 
represents the trend estimate, and the dashed red line indicates the 95% 
confidence interval (CI) of the trend obtained through bootstrap 
resampling methods. The overall trend for Delhi from 2007 to 2022 is 
displayed at the top-left corner, indicating a decrease of − 1.77 μg m− 3 

year− 1 for ambient PM2.5 and − 1.79 μg m− 3 year− 1 for de-seasonalized 
PM2.5. The square bracket denotes the 95% confidence interval (CI) of 
the trend. The significance levels of the trend are denoted by ***, **, *, 
and +, indicating significance at the 0.001, 0.01, 0.05, and 0.1 levels, 
respectively (see Fig. 5). 

The smoothTrend function in openair R package gives the smooth 
trend line using the non-parametric generalized additive modelling 
technique. Fig. 4a shows that the overall trend in ambient PM2.5 is non- 
linear. A rise in ambient PM2.5 levels was observed from 2007 to 2012. 
Afterwards, a decreasing trend in PM2.5 levels despite rising human and 
vehicle populations, small-scale factories and industries, and substantial 
construction activities in the Delhi-NCR region. Fig. 4c shows the 
smooth-trend plot in the de-seasonalized PM2.5 time series. Between 
2007 and 2008, there was an initial decrease in PM2.5 levels. However, 
from 2008 to 2012, there was a continuous rise in PM2.5 levels. Subse-
quently, a downtrend was observed from 2013 until 2022. A linear es-
timate using the Theil-Sen estimator showed a declining trend in both 
ambient (Fig. 4b) and de-seasonalized (Fig. 4d) PM2.5 time series with an 
average decrease of − 1.77 [95% CI: 3.94, 0.33] μg m− 3 year− 1 at p < 0.1 

Fig. 5. Break-point detection and change-segment analysis of ambient PM2.5 time-series at one day resolution for Delhi during 2007–2022. It is created using 
‘quantBreakPoints’ and ‘quantBreakSegments’ functions of AQEval R package. The solid blue line represents the statistically significant break point in the time series 
and dotted blue line shows the associated 95% confidence intervals determined using the ‘strucchange’ methods. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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and − 1.79 [95% CI: 2.65, − 0.96] μg m− 3 year− 1 at p < 0.001 level of 
significance respectively. It indicates PM2.5 approximately decreased by 
29 μg m− 3 during 2007–2022 over Delhi. It is essential to mention that 
with the de-seasonalization of the data, there is a minimal effect (1 μg 
m− 3) on the magnitude of the trend. However, the 95% confidence in-
terval and significance level of the trend get improved drastically. Also, 
by employing the Theil-Sen regression technique, we derived an esti-
mate of the linear trend across the complete study period. This method 
assumes a monotonically increasing or decreasing trend. However, 
leveraging a GAM model, we obtained a more refined estimate using 
non-linear regression techniques. Consequently, the linear trend esti-
mate surpasses the GAM estimate due to the latter’s ability to capture 
complex non-linear trends more effectively. 

3.2.3. Standalone break-point/segment testing 
The AQEval R package (Ropkins et al., 2023) has been used to 

identify and analyze the structural changes in the ambient pollutant 
time series. Ropkins et al. (2022) used this package to measure the 
impact of air quality related interventions in Leeds, UK. 

The ‘strucchange’ R package of Zeileis and colleagues (Zeileis et al., 
2002, 2003, 2008) describes robust statistical techniques to identify the 
structural changes in the time series. 

The break-point detection methods identify the significant break- 
points in the time series by applying the rolling window approach. In 
this approach, the linear regression properties of the pollutant time se-
ries are tested. It is based on the hypothesis that a break-point exists if 
the surrounding data can be better explained by two discrete models 
rather than one general model. Multiple break-points can also be iden-
tified with a 95% confidence interval. The break-point testing was 
applied to the complete time series with a time window/test window of 
15% (h = 0.15) of the length of the time series. In the rolling window 
approach, the size of the window determines the number of observations 
used in the analysis at each step. A potential structural change was 
identified, also known as a break-point (s) in the time series. Test sta-
tistics at a 0.05 significance level are calculated to check the statistical 
significance of each identified break-point. This method helps detect 
shifts in trends and patterns. The ‘Muggeo method’ (V. M. Muggeo, 
2008; V. M. R. Muggeo, 2003, 2017, 2023) extends break-point methods 
to identify regions of likely change (break-segment), allowing for the 
detection of gradual changes in a time series. Ropkins & Tate (2021) 
have used break-point and break-segment methods to identify the 
impact of COVID-19 lockdown on air quality trends in UK. Break-point 
and break-segment methods were directly applied to the ambient mea-
surements of PM2.5. Break-point testing conducted on the ambient PM2.5 
time series in Delhi revealed the presence of two potential break points. 
The first break point occurred on October 1, 2010, with a 95% confi-
dence range spanning from August 7, 2010, to November 2, 2010. The 
second break point was observed on February 15, 2013, within the 
confidence range of December 24, 2012, to May 29, 2013. The first 
break point, occurring on October 1, 2010, was associated with a sig-
nificant increase in PM2.5 levels from 103.4 to 162.6 μg m− 3, repre-
senting a rise of 59 μg m− 3 or a 57% increase. To understand this spike, 
five-day back trajectories pathways are computed at every 6-h intervals 
using the Hybrid Single-Particle Lagrangian Integrated Trajectory 
(HYSPLIT) model. This computational effort spans from the 7th of 
August to the 2nd of November in the year 2010. The primary objective 
of this analysis is to find the distinct contributions of remote and 
regional sources of pollutants to the atmospheric composition of Delhi 
within the 95% confidence interval of the breakpoint event. To facilitate 
these investigations, an archive reanalysis dataset sourced from the 
National Centers for Environmental Predictions (NCEP) is employed 
within the HYSPLIT framework. This dataset is characterized by a spatial 
resolution of 2.5◦ and encompasses 17 discrete pressure levels. 

Out of a total of 348 calculated trajectories over the given period, 
Total Spatial Variance (TSV) is calculated to combine close trajectories 
into five distinct clusters. Of particular significance are the trajectories 

denoted as red (23%) and magenta (7%), originating from the 
geographical location of Iran and Afghanistan. These trajectories are 
underscored by their propensity to transport pollutants over extended 
distances, thereby implicating them as substantial contributors to long- 
range pollutant influx and subsequent deposition within the Delhi re-
gion. In contrast, the remaining trajectories predominantly exhibit 
regional and local influences, contributing in excess of 65% to the 
observed air quality deterioration within the study domain of Delhi 
during the established investigation period. An additional salient 
observation pertains to the year 2010, during which the Commonwealth 
Games were prominently hosted within the Delhi region. The second 
break point, on February 15, 2013, was associated with a decrease in 
PM2.5 levels from 155 to 135 μg m− 3, indicating a drop of 20 μg m− 3 or a 
13% reduction in PM2.5 levels. Additionally, change-segment modeling 
analysis revealed five distinct periods of change (segments) in the PM2.5 
time series, as presented in Table S3 in the supplement. The model 
indicated a general decrease in PM2.5 concentration from 2007 to 2010, 
amounting to approximately 22% over four years. This was followed by 
a rapid step increase between September 23, 2010, and October 29, 
2010, with a staggering 116% rise within just 36 days. Subsequently, a 
significant reduction of 45% in PM2.5 levels was observed from 
November 2010 to 2011. From November 2011 to February 2012 
(spanning 106 days), PM2.5 concentration experienced a 22% increase. 
Finally, over a prolonged period of 11 years (2012–2022), PM2.5 levels 
dropped from 144 μg m− 3 to 96 μg m− 3, indicating a decrease of 34% 
(see Fig. 6). 

3.2.4. Partial dependencies of meteorological and time covariates with 
PM2.5 

Fig. 7 displays partial effects plots for all meteorological and time 
covariates of the PM2.5 GAMM model for 2007–2022, elucidating the 
relationship between PM2.5 and meteorological and time variables. 
Notably, all the plotted partial effects are between the log of PM2.5 
concentration and each covariate. The relationship between tempera-
ture and fine particles depends on the temperature range. Initially, as the 

Fig. 6. Five days back-trajectory cluster analysis over Delhi starting at 500 m 
height above ground from August 7, 2010 to November 2, 2010. 
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temperature rises to 15 ◦C, PM2.5 levels decrease. However, as the 
temperature rises from 15 ◦C to 40 ◦C, PM2.5 shows a non-linear in-
crease. Yang et al. (2016) state that an increase in temperature can 
improve air circulation, atmospheric turbulence, and thermal move-
ments, which decrease the concentration of PM2.5. After reaching 15 ◦C, 
we observe a positive association between PM2.5 and temperature, 
which can be attributed to the formation of secondary particulate matter 
from photochemical reactions between the precursors. Whiteman et al. 
(2014) report that high temperatures and longer duration of sunlight 
promote photochemical reactions and the formation of secondary 
aerosols. 

Wind speed is a crucial parameter that strongly affects fine particle 
concentrations (Fig. 7). As wind speed increases, PM2.5 mass concen-
tration decreases. Higher wind speeds disperse and dilute suspended fine 
particulates, resulting in lower concentrations near the ground. Mod-
erate wind speeds dilute suspended PM (Wu and Zhang, 2019). Wang 
and Ogawa (2015) suggest a threshold wind speed beyond which the 
association between PM2.5 and wind speed changes direction. We 
observe a peak for wind direction, specifically the north-westerly di-
rection, while south-westerly winds are associated with low PM2.5 
levels. 

As the planetary boundary layer height (PBLH) increases up to 500 m, 
there is a sharp decrease in PM2.5. However, as PBLH rises above 500 m, 
we observe almost no change in PM2.5 mass concentration. Luan et al. 
(2018) and Miao et al. (2018) find a non-linear negative correlation 
between PM2.5 and PBLH. The relationship between PBLH and PM is not 
necessarily always significant and negative (Geiß et al., 2017). Accord-
ing to Su et al. (2018) the association between particulate matter and 
PBLH is influenced by numerous factors, such as season, topography, 
and meteorological conditions. Particularly noteworthy interactions 
occur during shallow PBLH, leading to elevated PM2.5 levels. Precipita-
tion is a significant variable, but only at a 10% level of significance. We 
observe a negative relationship between precipitation and PM2.5. 

Precipitation has a scavenging effect on air pollution (Li et al., 2014). 
A negative and non-linear relationship was observed between PM2.5 

and relative humidity (RH). This may be attributed to the absorption of 
atmospheric moisture by suspended particles leading to swollen and 
bulky particulate matter (PM), which cannot remain suspended in air 
and finally results in their dry deposition. Wang and Ogawa (2015) also 
observed a strong negative correlation between PM2.5 and relative hu-
midity. Fig. S6 in the supplement shows the correlation plot between 
PM2.5 and all meteorological parameters. 

Day of the week was not a statistically significant variable. However, 
PM2.5 levels were strongly associated with the Julian day of the year 
(1–365/366). From January-March (1st–100th days), PM2.5 showed an 
almost linear decrease in concentrations, but from April-June 
(100th–200th days), the decrease was tiny and non-linear. After the 
250th day (September), PM2.5 concentration increased linearly, reach-
ing its peak in November, with a slight decrease in December. The years 
covariate shows that the trend of PM2.5 fluctuates, but there is an overall 
weak downtrend over the 16-year study period. 

3.3. Performance of the GAM model 

Fig. 8 depicts the model evaluation plots for the meteorology- 
adjusted model of PM2.5 for the period 2007–2022. The upper-left plot 
displays the quantiles of the model residuals against the theoretical 
quantiles, assuming a Gaussian distribution for the residuals. Black data 
points represent the PM2.5 residuals, and they deviate from the straight 
line representing a good model fit only at the upper tail portion. How-
ever, it is worth noting that the PM2.5 residuals also deviates, but only 
slightly so, at the lower extremes. The remaining subplots of the model 
evaluation plots for PM2.5 closely resemble the ideal plots. 

Fig. 9a shows the conditional quantile plot for the PM2.5 GAM model 
for the 2007–2022 cross-validation period. The graph shows the light 
and dark yellow shades, which represent the 10/90th and 25/75th 

Fig. 7. Partial effects plots for the meteorological and time variables of AR (1) GAM model for PM2.5 during 2007–2022. temp, ws, wd, pblh, rh, mcc, and prec 
represent temperature, wind speed, wind direction, planetary boundary layer height, relative humidity, medium-height cloud cover, and precipitation, respectively. 
‘s()’ represent the smooth function of the GAM model. CRS at the bottom of each subplot and cyclic CRS for wind direction show that cubic regression and cyclic 
cubic regression splines are used as smooth functions, respectively. The grey-shaded area represents the 95% confidence region for the curve. Notably, all the plotted 
partial effects are between the log of PM2.5 concentration and each covariate. 
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percentiles of the GAM predictions. The dark red curve shows the me-
dian of the GAM predicted values, while the light blue histogram and 
straight line depict the observed values. The grey-shaded area represents 
the histogram of the GAM predicted values. The graph compares the 
meteorology-adjusted GAM prediction quantiles against the observed 
concentration quantiles. The median of the model predicted quantiles 
closely follows the perfect model up to 200 μg m− 3. The light-yellow 
region, which represents the 25/75 percentile of the model predicted 
quantiles, accommodates the actual concentration quantiles (light blue 
line) for all values up to approximately 300 μg m− 3. However, at higher 
concentrations, the model underestimates high PM2.5 peaks, resulting in 
significant deviation. The model’s performance was also evaluated using 
the Taylor’s diagram shown in Fig. 9b. It shows correlation coefficient, 
standard deviation and centred RMS error in a 2-D plot. The model 
underestimates the variability of PM2.5 concentration because it lies 
below the dashed black line. A high correlation coefficient (r = 0.7, 
shown by a red circle) indicates a close agreement between the 

observation and model output. The root mean square error in the model 
is 57 μg m− 3. 

Here n, FAC2, MB, MGE, NMGE, RMSE, COE, IOA, r represents the 
number of days used for model evaluation, the fraction of prediction 
within a factor of two, mean bias, mean gross error, normalised mean 
gross error, root mean squared error, coefficient of efficiency, index of 
agreement, and Pearson correlation coefficient between the observed 
and GAM predicted values. Table 2 shows that GAM performed fairly 
well for PM2.5 during the study period. PM2.5 model evaluation results 
are based on 5327 days. 

3.4. GAM as a prediction tool 

GAM serves as a prediction tool for estimating PM2.5 concentration 
using solely meteorological and time variables. Firstly, the GAM was 
trained for the training data set, which here includes the trend estima-
tion period from 2007 to 2022, except for a cross-validation test year, 

Fig. 8. Model check plots for meteorology-adjusted model for PM2.5 at Delhi for 2007–2022.  

Fig. 9. a) Conditional quantile plot and b) Taylor diagram showing the GAM model performance statistics for predicting the PM2.5 concentration in Delhi.  

Chetna et al.                                                                                                                                                                                                                                    



Atmospheric Environment: X 22 (2024) 100255

11

which is selected here as 2022 (cross-validation results for other years 
are shown in the Supplement Figs. S7–S11). Fig. 10, displays the PM2.5 
concentration predictions for 2022, represented by both observed (blue) 
and meteorology-adjusted GAM predicted (red) values. The observed 
and GAM-predicted values are in close agreement, except for the 
episodic high values, which were strongly underestimated by GAM. This 
may be because most episodic events were associated with the long- 
range transport. 

In Delhi, dust storms occurring in March-April are attributed to long- 
range transport, specifically Arabian dust, and medium-range transport, 
from the Thar desert of Rajasthan (Kumar et al., 2014; Sarkar et al., 
2019; Singh et al., 2022). In contrast, smoke and precursor gases are 
transported to Delhi during October-November medium-range transport 
from Punjab, Haryana, and eastern Uttar Pradesh, intensifying the 
already elevated PM2.5 levels (Jethva et al., 2018; Montes et al., 2022; 
Takigawa et al., 2020). Unfortunately, the AirGAM model inadequately 
estimates the effects of long-range transport due to its dependence on 
local meteorology and time variables alone. Notably, the model relies on 
the day-of-year parameter to learn about high peaks resulting from 
stubble-burning emissions in October-November. 

Using 16 years of data, the model has established smooth non-linear 
functions to predict PM2.5 concentration levels. However, the model’s 
limited ability to predict peaks is not solely attributed to the stark dif-
ferences in meteorological conditions between Delhi and neighboring 
states where stubble is burned. The variability of burning emissions 
strongly influences it, as fire events do not consistently occur on the 
same day each year. 

It’s important to acknowledge that the model’s limitation persists 
because it relies exclusively on meteorological and time covariates to 
predict PM2.5 levels. The model lacks information regarding emissions, 
background conditions, and the formation of secondary particulates 
through precursor gases. Despite these limitations, it’s noteworthy that 
the model demonstrates satisfactory performance with minimal input 
from meteorology and time. Nonetheless, the model demonstrated 
overall satisfactory performance and can be used to predict PM2.5 con-
centrations using only meteorology and time variables with reasonably 
good accuracy under more regular conditions, where long-range trans-
port is less important. 

3.5. Theil-Sen trends in meteorological parameters 

Since meteorology affects the PM2.5 concentration, we also calcu-
lated the Theil-Sen linear trends for all meteorological parameters dur-
ing 2007–2022 over Delhi. Fig. 11 shows that except for temperature, 
statistically significant trends were observed in wind speed, wind di-
rection, relative humidity, planetary boundary layer height, and rainfall. 
A small but significant rising trend were observed in relative humidity 
(0.35% year− 1 with p < 0.001) and rainfall (0.03 mm day− 1 year− 1 with 
p < 0.001). Wind speed (− 0.01 m s− 1 year− 1 with p < 0.05) and PBLH 
(− 1.76 m year− 1 with p < 0.05) exhibited a declining trend. The 95% 
confidence interval of the trends are shown in the square bracket on 
each subplot. Our study demonstrates that the effects of inter-annual 
variations in meteorology over PM2.5 long-term trends were minimal 
during the study period. GAM unadjusted and meteorology-adjusted 
PM2.5 trends were very close during 2007–2014 and overlapped each 
other during 2015–2022. 

4. Conclusions 

The present study examines the trends in PM2.5 levels in Delhi from 
2007 to 2022, both with and without adjustments for meteorology. The 
recent AirGAM 2022r1 model was used, considering daily averages of 
PM2.5 and meteorological data. The model estimated the influence of 
meteorological variability on fine particle pollution trends over the city. 
The study found that while there were slight downward trends in both 
unadjusted (14 μg m− 3) and meteorology-adjusted (18 μg m− 3) PM2.5 
levels, the impact of meteorological changes on fine particle pollution 
was minimal. The model had an adj. R2 of 0.55, with covariates day-of- 
year and years (associated with the trend) being statistically significant. 
Day-of-week and medium height cloud cover were insignificant. Wind 
speed was the most influential factor, followed by planetary boundary 
layer height and temperature. However, all meteorological parameters 
had a non-linear relationship with PM2.5. The model performed well in 
predicting PM2.5 levels (correlation of 0.7), but underestimated peak 
levels, which is linked to long-range transport of pollutants. Over time, 
relative humidity and rainfall have shown increasing trends, while wind 
speed and planetary boundary layer height exhibited declining trends 
over Delhi. As for temperature, no significant long-term trends have 
been observed. Our study demonstrates that the effects of inter-annual 
variations in meteorology over PM2.5 long-term trends were minimal 

Table 2 
A summary of statistics for the GAM performance for PM2.5.  

Pollutant n FAC2 MB MGE NMGE RMSE COE IOA r 

PM2.5 5327 0.93 0.09 35.91 0.29 57.16 0.42 0.71 0.72  

Fig. 10. Observed (blue) and meteorology adjusted GAM predicted (red) concentrations of PM2.5 for 2022. The grey-shaded region demonstrates a 95% prediction 
interval. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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during the study period. The analysis revealed two significant break- 
points in the PM2.5 time series. The first break-point occurred on 
October 1, 2010, and coincided with a substantial 57% increase in PM2.5 
levels. This rise is likely attributable to the long-range transport of 
pollutants. While there have been some improvements in particle 
pollution, further actions are needed to significantly reduce PM2.5 levels 
through regional joint prevention and control efforts. 
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