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ABSTRACT Air pollution is a global challenge to human health and the ecological environment.
Identifying the relationship among pollutants, their fundamental sources and detrimental effects on health
and mental well-being is critical in order to implement appropriate countermeasures. The way forward to
address this issue and assess air quality is through accurate air pollution prediction. Such prediction can
subsequently assist governing bodies in making prompt, evidence-based decisions and prevent further harm
to our urban environment, public health, and climate, all of which co-benefit our economy. In this study,
the main objective is to explore the strength of features and proposed a two stage feature engineering
approach, which fuses the advantage of influential factors along with the decomposition approach and
generates an optimum feature combination for five major pollutants including Nitrogen Dioxide (NO2),
Ozone (O3), Sulphur Dioxide (SO2), and Particulate Matter (PM2.5, and PM10). The experiments are
conducted using a dataset from 2015 to 2020 which is publicly available and is collected from Belfast-
based air quality monitoring stations in Northern Ireland, UK. In stage-1, using the dataset new features
such as trigonometric and statistical features are created to capture their dependency on the target pollutant
and generated correlation-inspired best feature combinations to improve forecasting model performance.
This is further enhanced in stage-2 by an optimum feature combination which is an integration of stage-1
and Variational Mode Decomposition (VMD) based features. This study employed a simplified Long Short
Term Memory (LSTM) neural network and proposed a single-step forecasting model to predict multivariate
time series data. Three performance indicators are used to evaluate the effectiveness of forecasting model:
(a) root mean square error (RMSE), (b) mean absolute error (MAE), and (c) R-squared (R2). The results
demonstrate the effectiveness of proposed approach with 13% improvement in performance (in terms of R2)
and the lowest error scores for both RMSE and MAE.

INDEX TERMS Air pollution; Feature engineering; Variational mode decomposition; Air Quality;
Machine learning; Predictive models; LSTM; Air pollutants; Multivariate time series;

I. INTRODUCTION

A IR pollution is one of the major global environmental
health issues caused by the rapid rise in urbanisation

and industrialisation. It has become the biggest threat to
our health and the environment we live in. Around 99% of
our global population breathes air that contains high levels
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of pollutants and leads to increased morbidity and mortal-
ity [1], [2]. From neurological, respiratory, cardiovascular,
and metabolic to reproductive, every system in the body is
affected by air pollution. Each year 6.7 million premature
deaths are recorded worldwide, with low and middle income
nations accounting for 95% of these deaths [3]. However,
to mitigate the effects of pollution on health, environment,
economy, and climate, the United Nations (UN) has estab-
lished sustainable development goals (SDGs) such as 3, 7,
and 11. These goals set targets for 2030 with the aim to
reduce deaths, illness, and adverse environmental effects in
cities by facilitating access to clean and sustainable energy,
transportation, and urbanisation with green and blue spaces.
The WHO recently released air quality guidelines to establish
evidence based global targets to protect public health by
enhancing air quality [1]. Likewise, the government of the
United Kingdom (UK) has set a goal to curtail 35% of air
pollution by 2040 [4].

Generally, air quality is influenced by numerous factors
involving local geography, weather, and sources of emis-
sions. In Northern Ireland (NI), major sources of pollutant
emission mostly revolve around the combustion of fossil
fuels at domestic, transportation, and industrial levels [5].
Pollutants like Nitrogen Dioxide (NO2) and Sulphur Dioxide
(SO2) are directly released into the air because of com-
bustion processes involving fossil fuels (e.g. coal and oil)
in transportation, industrial, commercial, power refineries,
and electrical supply sectors. In various regions of the UK,
particularly NI, coal is regarded as a significant domestic
energy source which explains why these gases are found
predominant in emissions. Exposure to these gases irritates
the respiratory tract which increases the likelihood of cough,
infection, mucus formation, and chronic lung disease. Addi-
tionally, also causes damage to our ecosystem with acid rain,
reduced photosynthesis, chlorophyll degradation, damage to
foliage, acidification of water, and soil which subsequently
leads to a decline in biodiversity. In terms of Ozone (O3) at
the ground level, unlike other man-made sourced emissions,
it is indirectly emitted in the air because of a photochemical
reaction formed between Nitrogen dioxide and volatile or-
ganic compounds in the presence of sunlight. It takes hours
or days to form and rural areas are the ones most affected
due to its long range movement far from its original site
of emission. High exposure to O3 damage airways, irritate
eyes and nose, and necessitates hospitalisation. In addition,
also cause damage to forest, plant species, and biodiversity.
Particulate Matter (PM) which includes PM2.5 and PM10, is
typically classified based on the particle size. For instance, a
particle less than 2.5 µm diameter is referred to as PM2.5,
and a particle smaller than 10 µm in diameter is referred
to as PM10. Particulate matter particularly PM2.5 is con-
sidered one of the primarily focused pollutants which pose
the greatest threat to human health and the environment. In
the UK, primary PM is emitted directly into the air because
of man-made sources primarily by fuel combustion, engine
emission from road transportation, tyre, and brake wear,

and other non-exhaust emissions from industries. Whereas,
secondary PM is formed by chemical reactions in air from
the emission of certain pollutants such as SO2, Nitrogen
Oxide (NOX ), Ammonia (NH3), and organic compounds
sourced from either vegetation or combustion. Both short
and long term exposure cause cardiovascular and respiratory
diseases along with cognitive decline, other ill health effects,
and mortality [6]. In addition, the WHO and Committee on
the Medical Effects of Air Pollutants (COMEAP) recently
reviewed that exposure to PM2.5 is strongly associated with
adverse health impacts [7]. In addition, few recent studies
also look into monitoring and modelling of aerosol and air
pollution [8]–[10].

Identification of pollutants, their sources of emission,
and accurate prediction of their concentration is vital and
facilitates the authorities and governing bodies in making
evidence-based decisions. They can further put policies and
controls in place, where needed to prevent further loss, help
public demand, and build healthier communities to improve
air quality. Interdisciplinary collaboration of experts with
other stakeholders is fundamental to tackling such challenges
and helps in educating and public awareness [11]. As we
know, all of this is a result of utilising different energy
sources to facilitate our lives, in return giving rise to pollution
and deteriorating air quality, health, environment, ecosystem,
and climate. At this point, experts and measures alone are
never enough to resolve this challenge until the public accepts
responsibility for their actions and adopts healthy lifestyle
modifications, such as walking, cycling, or taking public
transport whenever possible instead of driving a car. Addi-
tionally, switching to electric cars, using renewable power
sources (combustion-free), authorised low emission fuels and
installing exempted fireplaces to control smoke, ensuring the
boiler is up to date, and having adequate home insulation can
all help. Positive incremental improvement is seen in NI air
quality compared of what it was even before the industrial
revolution via strict successful policies implementations on
the emission of certain pollutants from major sources [12].
A few of the successful policies adhered to in NI include
the introduction of smoke control areas with the strict usage
of only authorised fuels for appliances and exempted fire-
places. Similarly in London (the capital of England) after a
successful trial of the Low Emission Zone (LEZ) scheme,
the Ultra Low Emission Zone (ULEZ) is recently expanded
now and resulted in a significant i.e., 50% reduction in NO2

emission and 5 times fastest pollution reduction compared to
other parts of UK since 2016-2020 [13].

The main contributions of this study include:
• We propose a two stage feature engineering approach.

In stage-1, we have considered features that are avail-
able in the dataset and created new features to capture
dependencies of features with target pollutants. A to-
tal of 22 features are generated among categories like
meteorological, temporal, statistical and air pollutants.
In stage-2, we further used variational mode decom-
position (VMD) to generate new features to capture
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dependencies with respective pollutants in discussion.
• We experimentally evaluated and comprehensively

analysed all feature combinations for target pollutants
and proposed a unique optimum feature combination
that can improve a simplified forecasting model per-
formance in terms of root mean square error (RMSE),
mean absolute error (MAE), and R-squared (R2). We
proposed a two stage feature selection method which
in stage-1 performs feature selection using correlation
and optimises the performance of forecasting model by
further integrating VMD based features (i.e. based on
selection of optimum number of IMFs) in stage-2.

• We provide a detailed performance evaluation of op-
timum feature combination for a total of 5 pollutants
(NO2, SO2, O3, PM2.5, and PM10) by considering
a simplified LSTM based forecasting model and in-
vestigated the key features that can influence various
pollutants differently.

The remainder of the paper is organised as follows: related
work and contributions are provided in Section II. Section III
describes the dataset and Section IV provides details about
two stage feature engineering. Model training and testing are
discussed in Section V. Results and discussion are provided
in Section VI and finally, the paper is concluded in Section
VII.

II. RELATED WORK
Machine learning (ML) has revolutionised many scientific
domains to tackle intricate engineering challenges, particu-
larly ML-based feature engineering and regression models
play a pivotal role in air pollution forecasting. It shows
notable progression in research because of its accurate pre-
diction, low-cost implementation, and flexible adaptability.
To handle high dimensional large-scale data gathered from
35 air quality monitoring stations situated in Beijing, a light
gradient boosting machine model is proposed in [14]. In addi-
tion to air pollutants, statistical, temporal, and meteorological
features, they used the following 24 hours of weather pre-
diction data as predictive data features to predict the PM2.5
concentration for the following 24 hours. Based on the corre-
lation of features, the performance of the model is compared
with other models such as Adaptive boosting (Adaboost),
gradient boosting decision tree (GBDT), extreme gradient
boosting (XGboost), and deep neural network (DNN) and
findings revealed that their model outperformed others under
indicators such as symmetric mean absolute percentage error
(SMAPE), mean square error (MSE) and MAE. In [15], short
term forecasting hybrid approach combining convolutional
neural network (CNN) and bidirectional gated recurrent
unit (GRU) was proposed to predict PM2.5 concentration
in Beijing. Several feature combinations were tested based
on the correlation analysis of time series data and found
that the performance of the proposed model is better when
historical data of pollutant and meteorological factors such
as temperature, dew point, wind direction, and speed are
used. When compared with shallow ML models and GRU,

the suggested model demonstrated a notable improvement
in terms of error score. An encoder-decoder LSTM model
is proposed with Genetic algorithm (GA) feature selection
to predict PM2.5 concentration using two datasets collected
from Hanoi and Taiwan [16]. The datasets comprised of
meteorological and air pollutant features. Several feature
combinations were tested and the results showed that the best
combination relied on wind, temperature, radiation, PM2.5,
and PM10. Their proposed approach enhanced prediction
accuracy using MAE as an assessment metric. In a similar
study, a multitask learning model using LSTM autoencoder
is presented to predict PM2.5 time series across Beijing city
at several locations. LSTM was intended for learning spatial-
temporal PM2.5 time series features and autoencoder for en-
coding meteorological parameters. The dataset was collected
from 18 air quality and 13 meteorological monitoring sta-
tions. While meteorological time series includes temperature,
pressure, humidity, wind speed, and direction, air quality data
covers the spatiotemporal aspects of numerous sites [17].

A hybrid deep learning model is proposed which com-
bines multiple one-dimensional (1D) CNN and bi-directional
LSTM (BiLSTM) to predict single-step and multi-step (48
hrs) PM2.5 concentration using two datasets [18]. The
dataset includes hourly meteorological and air pollutant at-
tributes collected over four years. Local trends and spatial
features are extracted using 1D-CNN, while LSTM is used
to learn spatial-temporal dependencies. The results indicated
good forecasting ability when compared with SVR, LSTM
variants, CNN, and RNN. Similarly, in another study, a
hybrid ML approach is proposed to predict PM2.5 concen-
tration following the consequences of conflict in the city of
Kiev [19]. They proposed optimising multilayer perceptron
neural network (MLPNN) using electromagnetic field op-
timisation (EFO) algorithm to get better prediction. Three
distinct sources of data were gathered, and the data included
temporal, air pollutants, and meteorological aspects. In addi-
tion, principal component analysis (PCA) is used to reduce
the data and choose the helpful factors. Though the study
had certain limitations, however, the results demonstrated the
competency of the models for use in real-world scenarios
in Kiev. In [20], Dual LSTM is proposed which combines
the single and multi-factor prediction models. Both mod-
els used sequence-to-sequence (seq2seq) technology which
contains an encoder and decoder while an extreme gradient
boosting (XGBoost) regression tree is opted for integration.
The dataset contains hourly based spatiotemporal features
collected from multiple stations in Beijing. Experimental
results indicated improvement in error under five assessment
indices in comparison to other models. Moreover, another
study proposed a dual-stage attention based on conversion-
gated LSTM (DA-CG-LSTM) to predict air quality and traf-
fic flow. To improve the ability of the model to capture short
term mutation information, a hyperbolic tangent function is
introduced in input and forget gates. Additionally, dual staged
attention is added in terms of input and temporal attention.
Experimental results show a 50% lower error rate in compar-
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ison to dual-staged attention recurrent neural network (DA-
RNN) and transformation-gated LSTM (TG-LSTM) [21].

Recent research shows the superiority of hybrid models
based on decomposition and ensemble over the single fore-
casting model. For instance, a recent study proposed a dual
layer decomposition and the feedback of the model learning
effect for the prediction of PM2.5 concentration [22]. Ini-
tially, ensemble empirical mode decomposition (EEMD) is
used for decomposing PM2.5 time series followed by sample
entropy (SE) methodology and then VMD is employed where
SE is higher than the average value. A wavelet neural network
(WNN) model is established for each sub-series prediction
which is later combined to get the final prediction. Addi-
tionally, the network frame structure and prediction ability
of the model are improved using feedback of the learning
effect. In another study, a VMD based BiLSTM model is
proposed for single-step prediction of PM2.5 concentration
in various cities of China [23]. In this work, BiLSTM is
employed separately for all sub-series decomposed by VMD
and concatenated all at last to get the final prediction. Results
based on comprehensive analysis with other EMD and VMD
based models show improvement in prediction accuracy and
error. This study recommends VMD over other signal pro-
cessing techniques in combination with BiLSTM. A novel
hybrid model is proposed for AQI prediction using three
datasets collected from Beijing, Tianjin, and Shijiazhuang
[24]. Here, a secondary decomposition is proposed which is
based on empirical wavelet transform (EWT) for the initial
decomposition of AQI time series and VMD for the second
decomposition of the sub-series with larger entropy values. In
addition, optimal features are extracted using an imperialist
competitive algorithm (ICA), and the echo state network
(ESN) model is used for the prediction of each sub-series and
obtaining the final prediction by integration.

In [25], the parameters of VMD and LSTM models are op-
timised based on enhanced versions of sparrow search algo-
rithms (SSA) for a single-step AQI prediction. The dataset is
used from three different locations in China and the proposed
model performance is evaluated on test data and validation
data for generalisation ability. In the proposed model, LSTM
is used for each IMF (intrinsic mode function), also known
as sub-series, and it is found that SSA based VMD-LSTM
model has better prediction and generalisation performance.
In [26], SE is introduced to reduce the total number of IMFs
and AQI from two cities in China is predicted using LSTM
models. The AQI prediction is obtained by summing the
prediction from each LSTM model. An optimal hybrid model
based on secondary decomposition and air pollutant factors
for forecasting AQI is proposed in [27]. Primarily, wavelet
decomposition (WD) is used to decompose the AQI series
into high and low frequency sub-series. High frequency series
are further decomposed by VMD-SE to smooth the series and
later LSTM is adopted for modelling each decomposed sub-
series. While for low frequency series, the least squares sup-
port vector machine (LS-SVM) along with bat optimisation
algorithm is employed and also considered the effect of air

pollutant factors such as NO2, SO2, CO, PM2.5 and PM10.
The final result is attained by aggregating the predictions of
forecasting models for each sub-series. In [28], Dung Beetle
Optimisation is used to optimise the VMD decomposition
and XGBoost model for PM2.5 single-step prediction. By
using correlation, feature filtering is performed and further
features are categorised based on the frequency of IMFs
and a combination of XGBoost and informer models are
used for prediction. Although aforementioned studies have
investigated different aspects of feature engineering, feature
selection focuses on a single pollutant only (e.g. mostly
PM2.5) and complex forecasting models. However, still re-
quires careful consideration to understand the relationship
between the target and features and how this information
can be used to define a set of optimum features which can
improve the performance of a simplified forecasting model.
In addition, it is important to find such optimum features for
a wide range of pollutants which can allow forecasting using
a very simplified common model.

III. DATASET
In this study, the dataset used is comprised of over 50,000
samples measured by an air quality monitoring station sit-
uated in Belfast city center, Northern Ireland from 2015 to
2020 [29], [30]. This dataset includes hourly concentration
levels of meteorological data and air quality parameters. Me-
teorological data involves temperature (◦C), wind horizontal
and wind vertical whereas air quality parameters include
NO2, O3, SO2, PM2.5, PM10, Nitric Oxide (NO), NOX and
Carbon Monoxide (CO).

Table.1 provides statistical information such as total count,
mean, standard deviation, minimum and maximum value of
meteorological data. The mean and standard deviation of
all parameters ranges from -2.15 to 8.27 and 3.66 to 4.50,
respectively. In addition, minimum and maximum values of
all parameters fall between -19.75 to 0 and 15.85 to 24,
respectively. The statistical descriptions of the pollutants
being predicted in this work are listed in Table. 2, albeit the
dataset contains more than these. The NO2 concentration has
a mean of 26.12 with a standard deviation of 17.87 and the
values vary from 1 to 203. However, SO2 has the lowest
mean and standard deviation among all which is 1.55 and
1.6, respectively.

TABLE 1. Statistical description of meteorological data.

Count
Moment

(mean, std)
Boundary
(min, max)

Percentile
(25, 50, 75)

Temperature 52564 (8.27, 4.43) (0, 24) (4.9, 8, 11.5)
Wind

Horizontal
52564 (-1.06, 3.66) (-18.53, 15.85) (-3.4, -1.1, 1.4)

Wind
Vertical

52564 (-2.15, 4.50) (-19.75, 16.68) (-5.2, -2.6, 1)

IV. FEATURE ENGINEERING
There is widespread agreement that models attempt to reach
the limit determined by data and features in ML. Therefore,
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TABLE 2. Statistical description of air pollutants in µg/m3.

Count
Moment

(mean, std)
Boundary
(min, max)

Percentile
(25, 50, 75)

NO2 52564 (26.12, 17.87) (1, 203) (13, 22, 35)
O3 52567 (43.24, 20.65) (0, 150) (29, 44, 58)
SO2 52514 (1.55, 1.6) (0, 20) (1, 1, 2)
PM2.5 52545 (9, 7.94) (0, 104) (4, 7, 11)
PM10 52510 (14.15, 10.6) (0, 143) (8, 12, 17)

the goal is to find the optimum set of features by exploring
their respective strength from the given time series data
with expectations to have significant improvement in model
prediction, training time, and complexity. In this study, we
grouped features into four types based on characteristics
which include meteorological, temporal, statistical, and air
pollutants. In meteorological features, we have considered
temperature, wind horizontal and wind vertical since high
temperature affects the airflow and strong winds modify the
concentration of various pollutants, thus both impact the air
quality [14], [31]. In terms of temporal features, datetime
index contained in the dataset is utilised to create nine ad-
ditional features. Initially, datetime index is split into hour,
day, and month features. Since day, month, and hour are
cyclical variables, trigonometric functions such as sine and
cosine are applied to them to create six additional features in-
cluding month_sin, month_cos, day_sin, day_cos, hour_sin,
and hour_cos. With this encoding, the model is better able
to capture the cyclic temporal relationships which further
enhance the model performance [32]. Table. 3 provides list
of notations along with description used in this study. For a
given feature z(t), trigonometric features can be generated
using (1)-(2):

zsin(t) = sin(2πz(t)/P ), (1)

zcos(t) = cos(2πz(t)/P ), (2)

where P is the period which is 12, 24, and 31 for month, hour
and day data, respectively.

In the statistical feature, we only considered the mean of
the previous two hours of the pollutant being predicted. Air
pollutant features include eight pollutants NO2, O3, SO2,
PM2.5, PM10, NO, NOX , and CO. In addition, a lag feature
is created which is based on the previous hour concentration
value of the pollutant being predicted. In summary after
feature engineering, a total of 22 features are introduced
including 3 meteorological, 9 temporal, 1 statistical, and 9 air
pollutants to be used as an input to the model as per relevance
with the targeted pollutant as listed in Table. 4.

A. CORRELATION BASED FEATURE SELECTION
Given the fact that irrelevant features not only increase the
training time but also add to computational cost, appropriate
feature selection is critical for better prediction. For this
reason, a filter mechanism is required that performs feature
selection independent of the chosen forecasting model. In

TABLE 3. List of notations with description.

Notations Description
z Feature from dataset
z̄ Mean of a feature
x Target output from dataset
x̄ Mean of target output
q Target output from test data
q̄ Mean of target output from test data
q̂ Estimated target output
P Period (i.e, hours, days or months)
M Total number of samples in dataset
T Total number of samples in test data
U Real-valued signal
uk Narrowband sub-signal or IMF
R Residual signal
K Total number of IMFs
s Input of the LSTM cell
e Output of forget gate
l Output of the input gate
y Output of the output gate
d Current state of a LSTM cell
w Weights of a gate in LSTM cell
b Bias factor of each gate of LSTM cell
σ Sigmoid activation function
g Final output of the LSTM cell

this work, we have considered a Pearson correlation-based
feature selection which is recommended when dealing with
numerical features and to confirm collinearity between fea-
tures and target [33]. The Pearson correlation coefficient r
between feature z(t) and target output x(t) is defined as:

r =

∑M
i=1(zi − z̄)(xi − x̄)√∑M

i=1(zi − z̄)2
∑M

i=1(xi − x̄)2
, (3)

where zi and xi are ith data samples, z̄ and x̄ are the mean
and M is a total number of samples.

All the features with positive correlation are selected in
this work. Table. 4 shows the correlation of the features,
all positively correlated features are tinted green (dark and
light), while negatively correlated features are represented
in lime tint. In, addition, dark green represent the best fea-
ture combination found for each pollutant (more detail is
discussed in Section V(2). For instance, in case of NO2, all
positively correlated features include air pollutants with lag
feature, mean from statistical, month_sin, month_cos, day,
hour from temporal, and wind vertical from meteorological
are considered. Whereas, negatively correlated features such
as temperature, wind horizontal, day_sin, day_cos, month,
hour_sin, hour_cos, and O3 are eliminated and not consid-
ered in the prediction of NO2.

B. VARIATIONAL MODE DECOMPOSITION BASED
FEATURE GENERATION
VMD is a signal decomposition method which decomposes
a real-valued signal U(t) into a finite number of narrowband
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TABLE 4. Correlation of all features w.r.t target pollutants.

sub-signals uk(t) (also known as IMFs or sub-series) [34]. In
this method, each IMF is represented by amplitude-frequency
modulated signal as:

uk(t) = Ak(t)cos(ϕk(t)), (4)

U(t) =

K∑
k=1

uk(t) +R, (5)

where Ak(t) is envelope, ϕk(t) is phase, K is the total
number of IMFs, R is a residual signal and instantaneous
frequency can be found as ϕ

′

k(t) which is non decreasing and
varies around the central frequency of the respective mode.
In recent years, VMD method has gained much attention as
a new feature engineering method in different applications
[35]–[37]. In this work, we aim to use VMD method to
generate additional new features based on the hourly lag
of the pollutant being predicted and investigate an optimum
number of IMFs required which can further improve fore-
casting model performance. Fig. 1 shows an example of lag
NO2 decomposition using 3 IMFs and residual data however
careful consideration is required to select parameter K so that
such features can improve forecasting model performance.

FIGURE 1. Decomposition of lag NO2 into IMFs and Residual plot.

V. MODEL TRAINING AND TESTING
This section provides details about the data preparation, two
stage feature engineering with selection and model training

and testing of the single-step forecasting model. Fig. 2 shows
the workflow of model training and testing with key compo-
nents.

FIGURE 2. Workflow of model training and testing with two stage feature
engineering and selection approach.

1) Data Pre-processing
In general, datasets may have outliers, missing or recurring
values known as invalid values. Outliers are extreme or
unusual values that differ significantly from the rest of the
dataset. As outliers can affect the overall distribution of
data, outliers may need investigation and must be treated
carefully to enhance the model performance. Likewise, it is
also important to remove or replace any invalid or missing
values with some estimated values prior to modelling. In this
study, the interquartile range method (IQR) is employed to
pre-process the outliers and invalid values are removed from
the dataset [38]. However, for the missing values data is
pre-processed by grouping them into day, month, and hour.
Missing values are then filled in by taking an average of the
available concentration values on the same month, day, and
hour across all years of the dataset. Following this approach,
a greater spread of values is reached for the missing data. In
addition to already existing features in the dataset, the lagged
feature is also created by taking the pollutant’s previous hour
concentration into account alongside splitting datetime index
into day, month, and hour for additional features. Fig. 3
depicts the pre-processing workflow of the dataset. A sample
of NO2 is depicted in Fig. 4 before and after pre-processing
data, representing the inclusion of missing values. After the
pre-processing, additional features are generated as discussed
in the section IV. Fig. 5 provide full data of NO2 after pre-
processing.

FIGURE 3. Pre-processing of dataset.

2) Two Stage Feature Selection
This study emphasis on the prediction of five major pollutants
i.e. NO2, O3, SO2, PM2.5 and PM10. The factors affecting
these pollutants may differ or be identical in some cases.
Interestingly, only a few of these predictors can be relied
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FIGURE 4. NO2 data sample (over 2 months) representing addition of
missing values.

FIGURE 5. NO2 data from 2015-2021 after addition of missing values.

upon, and those that are effective for one pollutant might not
be for another. Since the effectiveness of the model depends
on the inputs, it is imperative to identify optimal features for
each of these pollutant predictions. Fig. 6 shows our proposed
two stage feature selection approach to attain the optimum
combination of features. In stage-1, several experiments are
conducted with all possible combinations among all features
(positively correlated only) categories to determine the best
stage-1 combination and their effectiveness is analysed and
evaluated using a simplified LSTM model based on RMSE,
MAE, and R2 scores. We kept the same model parameters
during all the experiments to ensure that performance can
be evaluated due to changes in all combinations of features.
We are only reporting here the best stage-1 combinations
for each target pollutant after all the experiments. The best
stage-1 combination for NO2 is made up of features from
lag, temporal and meteorological categories. It achieves the
highest R2 score in comparison to other combinations and the
least error in terms of MAE and RMSE.

In stage-2, the best combination of stage-1 is integrated
with IMFs and residual from VMD method. We have per-
formed experiments in seek of an optimum number of IMFs
i.e. K for each pollutant. We have considered IMFs up to
ten along with residual and the efficacy of each combination
is evaluated using ML model (same model as in stage-1
for performance evaluation) using the performance indicators
(i.e., R2, MAE, and RMSE). In the experiments for each pol-
lutant, we have combined the best stage-1 combination and

increased the value of K to obtain performance indicators.
The value of K is selected where model has obtained the
optimum performance. Table. 5 provides summary of perfor-
mance evaluation on the selection of the optimum value of
K for NO2. It indicates that when NO2 is decomposed into
three IMFs and integrated with the best stage-1 combination,
it achieved the highest performance across all indicators and
is therefore considered to be the optimum combination for
NO2. The effectiveness of our proposed approach is also
examined by comparing how well it performed when using
just only lag as a feature, the best stage-1 combination or
features based on VMD. A performance comparison for
NO2 is shown in Fig. 7, where it can be observed that the
optimum combination outperforms the other combinations
based on lag, best stage-1 combination, and VMD features
(i.e., K = 3). In terms of R2, only lag or VMD features are
not sufficient. However, the stage-1 combination improved
the performance by 5% (w.r.t to lag feature performance),
which can be further enhanced using optimum combination
in stage-2 up to 86%.

A summary of optimum combinations for all pollutants
taken into consideration is provided in Table. 6. This demon-
strates exactly which stage-1 combination and IMF count
work best for each pollutant. It can be observed that lag
contributed to the prediction of all pollutants; aside from this
meteorological feature is found to be effective for NO2 and
SO2. Temporal features, on the other hand, are shown to
be helpful for NO2 and PM2.5, air pollutants for SO2 and
PM10, while the statistical feature is for SO2. Furthermore,
the best stage-1 combination for all pollutants is highlighted
using dark green tint in Table. 1 and is also summarised in
Table. 5. In addition, Table. 5, list the optimum IMF found
for each pollutant to be combined with its the best stage-
1 combination to produce optimum combination for each
respective pollutant. The best stage-1 combination for NO2 is
based on lag in conjunction with temporal (day, month_sin,
month_cos, hour) and meteorological (wind vertical) fea-
tures. In contrast, just lag functioned for O3. For SO2, the best
combination includes lag along with meteorological (wind
horizontal and vertical), statistical (mean of the preceding
two hours), and air pollutants (NO2, PM2.5, PM10, NO,
NOX , and CO). For PM2.5, combination of lag and temporal
(day, month_sin, month_cos, hour, hour_cos) is found best
stage-1. Lastly, for PM10, lag and air pollutant (NO2, SO2,
PM2.5, NO, NOX , and CO) proved to be the best of stage-1
combination. From the foregoing insight, it is evident that
all features except lag require careful selection, and that
the value of K may vary according to the pollutant being
anticipated.

3) Model Parameters and Tuning
Prior to training the model, the dataset is split into training,
validation, and testing sets with ratios of 70%, 20%, and 10%,
respectively. In each split, the indices are kept higher than the
previous set, which will avoid shuffling (i.e., inappropriate in
time series). The input features are normalised using Min-
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FIGURE 6. Two Stage Feature Selection.

TABLE 5. Selection of optimum number of IMFs for VMD decomposition
(NO2).

K RMSE R2 MAE
2 6.0358 0.8253 4.1309
3 5.4806 0.8559 3.6894
4 5.7264 0.8427 3.9261
5 5.7548 0.8411 3.9875
6 5.4917 0.8553 3.7140
7 5.7630 0.8407 3.9223
8 5.8206 0.8375 3.9869
9 5.6037 0.8494 3.8382

10 5.6535 0.8467 3.9226

FIGURE 7. Comparison of different combinations to produce optimum
combination for NO2.

TABLE 6. Summary of Stage-1 combinations and IMFs to produce optimum
combinations.

Pollutants Stage-1 Combination K

NO2 Lag + Meteorological + Temporal 3
O3 Lag 4

SO2
Lag + Meteorological + Statistical
+ Air Pollutant

4

PM2.5 Lag + Temporal 4
PM10 Lag + Air Pollutant 3

Max normalisation and is defined as:

znorm =
z − zmin

zmax − zmin
, (6)

where zmin and zmax are the minimum and maximum val-
ues.

In this work, we are considering a simplified LSTM fore-
casting model as shown in Fig. 8. The input layer passes
features to the model and we have used a LSTM layer with
25 cells, followed by a dropout layer which randomly drops
out the number of cells to handle overfitting with the rate
of 0.1. A fully connected dense layer with a linear activation
function is used to produce an output. Adam optimiser is used
during the training of the model and the optimal parameters
of the simplified LSTM model is found after several trials
to achieve better prediction accuracy on the given training
dataset. The summary of the parameters with architectural
details is given in Table. 7.

FIGURE 8. Architecture of simplified LSTM model.

TABLE 7. Summary of model parameters.

Parameters Value
No. of layer 1
No. of cells in each layer 25
Dropout layer 0.1
Dense layer 1, Linear
Optimiser Adam

In recent years, LSTM has been effectively used in various
fields for predicting time series data such as energy demand
[39], economics [40], wireless communications [41], and
road safety [42]. A functional diagram of the LSTM cell is
illustrated in Fig. 9 which is composed of three gates: a)
input gate, b) forget gate and c) output gate [43]. The previous
cell state d(t − 1) can influence the current state of the cell
d(t) and the amount of influence is controlled by the forget
gate output e(t). Similarly, the amount of influence by the
new information s(t) on d(t) is managed by the output of
input gate l(t). The final output g(t) of the cell is produced
by combining d(t), s(t) and the past hidden state of the cell
g(t− 1). Eq. (7)-(12) provide a mathematical representation
of a LSTM cell as follows:

e(t) = σ(we
ss(t) + we

gg(t− 1) + be), (7)

l(t) = σ(wl
ss(t) + wl

gg(t− 1) + bl), (8)

d̃(t) = tanh(wd̃
ss(t) + wd̃

gg(t− 1) + bd̃), (9)

y(t) = σ(wy
ss(t) + wy

gg(t− 1) + by), (10)

d(t) = e(t)d(t− 1) + l(t)d̃(t), (11)

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3443810

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE Access

FIGURE 9. LSTM Cell.

g(t) = y(t)tanh(d(t)), (12)

where b is the bias factor, w is the weight and activation
functions are σ and tanh to produce respective gate output.

4) Performance and Error Indicators
The efficacy of the ML forecasting model is assessed in this
study using three statistical evaluation indicators namely R2,
MAE and RMSE and mathematically expressed in Eq. (13) ,
(14) and (15) as follows:

R2 = 1−
∑T

i=1(qi − q̂i)
2∑T

i=1(qi − q̄)2
, (13)

MAE =
1

T

T∑
i=1

|qi − q̂i| , (14)

RMSE =

√√√√ 1

T

T∑
i=1

(qi − q̂i)
2
, (15)

where T is the total number of samples in test data, qi, q̄ and
q̂i are the target output at the ith sample, mean derived from
target output samples and predicted output at the ith sample,
respectively. Both MAE and RMSE are used to measure the
prediction error of the forecasting model and indicates the
extent to which model match target output in its predictions.
Meanwhile, R2 is another standard statistical indicator used
to represent the goodness fit of forecasting model. Generally,
models with higher R2 score (nearly 1) and lower MAE and
RMSE values indicates better prediction performance.

VI. RESULTS AND DISCUSSION
This section includes findings along with the related discus-
sions over experiments on the proposed two stage feature
engineering and selection method using a simplified forecast-
ing model for the considered pollutants. The effectiveness of
the proposed approach is examined and verified by making
a comparison of the optimum features generated using the
proposed approach with the best stage-1 combination of

features and lag of pollutant being predicted. To improve
clarity and better understanding, we are showcasing the
forecasting model prediction from the testing data spanning
only a week. Using test data for NO2, Fig. 10 illustrates
the forecasting model performance over a week when using
optimum features as an input to the model.

The results show that for NO2, our proposed optimum
combination via two stage feature engineering and selection
method outperform over all performance indicators in com-
parison to stage-1 combination and lag. In two stage feature
selection method, the optimum combination of features for
NO2 is based on the lag of the pollutant being predicted along
with the added benefits of the best stage-1 combination of
features which includes meteorological and temporal features
as well as VMD features (K = 3). After experimenting with
several feature combinations across the four types depicted
in Table. 4, the best combination for stage-1 is chosen.
However, the optimum combination significantly improved
the performance by 11% compared to the 5% improvement
attained by stage-1 combination with respect to lag (using tar-
get pollutant) in terms of R2. Thereby, achieving the highest
R2 score of 86% in comparison to 80% and 75% attained
by stage-1 combination and lag respectively. In addition,
the RMSE and MAE evaluation scores attained by optimum
combination indicate the least error values comparatively
others. Under the RMSE indicator, the evaluation score is
dropped by 0.92 and 1.75 compared to using stage-1 com-
bination and lag respectively. However, in terms of MAE,
the error is reduced by 0.68 and 1.53 with respect to stage-1
combination and lag. Fig. 15, 16, 17 illustrates comparison
of the proposed methodology for NO2.

The forecasting model predictions over testing data for O3,
SO2, PM2.5, and PM10 are shown in Fig. 11, 12, 13, 14, re-
spectively. In case of O3, our proposed method yet performed
best under all evaluation indicators. We experienced O3 a
singular case wherein no combination of features was found
helpful in improving the prediction in comparison to lag.
Since the accuracy achieved from all feature combinations of
stage-1 was equal to lag, we only integrated lag with 4 IMF
from VMD decomposition to get the optimum combination,
leaving stage-1 null. This resulted in 87% accuracy in terms
of R2, while the error scores for RMSE and MAE were
6.85 and 4.88, respectively. For SO2 time series data, the
recommended methodology attained 69% accuracy in terms
of R2 with corresponding RMSE and MAE error values of
0.51 and 0.36. The optimum combination includes lag, mete-
orological, statistical, and air pollutants features in addition
to 4 IMFs. These sub-series incorporated lag, meteorological,
statistical, and air pollutant features to determine the optimal
combination. Similarly, for PM2.5 and PM10, our proposed
method consistently performed better than stage-1 combina-
tion and lag and resulted in securing 86% and 76% accuracy
respectively, in terms of R2. Furthermore, error score is found
2.19 and 1.17 for PM2.5 and 4.88 and 2.38 for PM10 under
the RMSE and MAE assessment indicators, respectively. The
summary of the performance comparison of the single-step
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forecasting model for all pollutants obtained by different
feature combinations methods in terms of RMSE, R2 and
MAE is presented in Fig. 15, 16, 17, respectively.

FIGURE 10. Comparison between actual and predicted data of NO2 over a
week.

FIGURE 11. Comparison between actual and predicted data of O3 over a
week.

FIGURE 12. Comparison between actual and predicted data of SO2 over a
week.

Table. 8 summarises the proposed approach so that its
effectiveness can be evaluated. In case of NO2, using an
optimal combination, the forecasting model achieved 11%
more improvement with respect to R2, in comparison to 5%
using stage-1 combination. However, For O3, a 3% improve-
ment resulted from the usage of the optimum combination
of features. Furthermore, among all the pollutants, SO2 at-
tained the maximum performance improvement using opti-
mal combination which is 13% more than 2% gain by stage-
1 combination of features. Lastly, for PM2.5 and PM10, the
stage-1 combination could only enhance the performance
by 1%, whereas the optimal combination of features made

FIGURE 13. Comparison between actual and predicted data of PM2.5 over a
week.

FIGURE 14. Comparison between actual and predicted data of PM10 over a
week.

FIGURE 15. Comparison of features in terms of RMSE.

FIGURE 16. Comparison of features in terms of R2.

6% and 8% more improvement respectively. To summarise
the findings based on evaluation indicators, it can be easily
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FIGURE 17. Comparison of features in terms of MAE.

concluded that performance attained by the proposed two
stage feature engineering and selection approach is consis-
tently improved along with the lowest error scores for all the
pollutants in comparison to stage-1 combination and lag.

TABLE 8. Overall performance improvement based on proposed two stage
feature engineering and selection w.r.t R2.

Pollutants Improvement (%)
Stage-1 Optimum

NO2 5 11
O3 - 3

SO2 2 13
PM2.5 1 6
PM10 1 8

VII. CONCLUSION
Feature engineering is a fundamental step towards effective
modelling, particularly in the domain of time series predic-
tion and has a substantial effect on the performance of the
model. This study provides a comprehensive investigation
of the effectiveness of the proposed two stage feature engi-
neering and selection inspired by their correlation and VMD
approach for accurate prediction of 5 major air pollutants,
which are beneficial in assessing air quality. Given the fact
that there is no standard set of known features for a specific
pollutant prediction. Optimum feature combinations may
work differently for different pollutants and require customi-
sation. In this work, we created new features and categorised
them all into four major types (meteorological, temporal,
statistical, and air pollutants) and generated 22 features in
total. For stage-1, positively correlated features are selected
and it is found that different pollutants require different
feature combinations and such features can improve model
performance by 1-5% compared to lag-based prediction.
Moreover, performance is further enhanced by integrating
stage-1 features with features of VMD (only for the optimum
value of K) to form the optimum feature for a respective
pollutant. It is observed that such an optimum combination
can bring an overall performance improvement of 3 to 13%.
Our findings through results demonstrated that with the opti-
mum selection of features, a simplified forecasting model is

sufficient and has shown significant improvement in terms of
RMSE, MAE, and R2 scores.

The demonstrated two stage approach can play a critical
and important role in the urban planning such as traffic
management, establishment of new industrial or residential
areas and public health such as disease management, hotspot
identification and reliable forecasting can leads to evidence
based decision and policy making. However, further inves-
tigation is required to develop better integrated approach
where new feature engineering approaches can be developed
to improve performance over the longer time horizon such as
over next 24 hours or even longer. Another possible direction
could be to investigate hybrid decomposition approach by
taking benefit of different signal decomposition methods.
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