Vis enkel innførsel

dc.contributor.authorTang, Y. Sim
dc.contributor.authorFlechard, Chris R.
dc.contributor.authorDämmgen, Ulrich
dc.contributor.authorVidic, Sonja
dc.contributor.authorDjuricic, Vesna
dc.contributor.authorMitosinkova, Marta
dc.contributor.authorUggerud, Hilde Thelle
dc.contributor.authorSanz, Maria J.
dc.contributor.authorSimmons, Ivan
dc.contributor.authorDragosits, Ulrike
dc.contributor.authorNemitz, Eiko
dc.contributor.authorTwigg, Marsailidh
dc.contributor.authorvan Dijk, Netty
dc.contributor.authorFauvel, Yannick
dc.contributor.authorSanz, Francisco
dc.contributor.authorFerm, Martin
dc.contributor.authorPerrino, Cinzia
dc.contributor.authorCatrambone, Maria
dc.contributor.authorLeaver, David
dc.contributor.authorBraban, Christine F.
dc.contributor.authorCape, J. Neil
dc.contributor.authorHeal, Mathew R.
dc.contributor.authorSutton, Mark A.
dc.date.accessioned2021-03-16T08:25:21Z
dc.date.available2021-03-16T08:25:21Z
dc.date.created2021-03-15T11:24:44Z
dc.date.issued2021
dc.identifier.citationAtmospheric Chemistry and Physics. 2021, 21, 875-914.en_US
dc.identifier.issn1680-7316
dc.identifier.urihttps://hdl.handle.net/11250/2733524
dc.description.abstractA comprehensive European dataset on monthly atmospheric NH3, acid gases (HNO3, SO2, HCl), and aerosols (NH+4, NO−3, SO2−4, Cl−, Na+, Ca2+, Mg2+) is presented and analysed. Speciated measurements were made with a low-volume denuder and filter pack method (DEnuder for Long-Term Atmospheric sampling, DELTA®) as part of the EU NitroEurope (NEU) integrated project. Altogether, there were 64 sites in 20 countries (2006–2010), coordinated between seven European laboratories. Bulk wet-deposition measurements were carried out at 16 co-located sites (2008–2010). Inter-comparisons of chemical analysis and DELTA® measurements allowed an assessment of comparability between laboratories. The form and concentrations of the different gas and aerosol components measured varied between individual sites and grouped sites according to country, European regions, and four main ecosystem types (crops, grassland, forests, and semi-natural). The smallest concentrations (with the exception of SO2−4 and Na+) were in northern Europe (Scandinavia), with broad elevations of all components across other regions. SO2 concentrations were highest in central and eastern Europe, with larger SO2 emissions, but particulate SO2−4 concentrations were more homogeneous between regions. Gas-phase NH3 was the most abundant single measured component at the majority of sites, with the largest variability in concentrations across the network. The largest concentrations of NH3, NH+4, and NO−3 were at cropland sites in intensively managed agricultural areas (e.g. Borgo Cioffi in Italy), and the smallest were at remote semi-natural and forest sites (e.g. Lompolojänkkä, Finland), highlighting the potential for NH3 to drive the formation of both NH+4 and NO−3 aerosol. In the aerosol phase, NH+4 was highly correlated with both NO−3 and SO2−4, with a near-1:1 relationship between the equivalent concentrations of NH+4 and sum (NO−3+ SO2−4),of which around 60 % was as NH4NO3. Distinct seasonality was also observed in the data, influenced by changes in emissions, chemical interactions, and the influence of meteorology on partitioning between the main inorganic gases and aerosol species. Springtime maxima in NH3 were attributed to the main period of manure spreading, while the peak in summer and trough in winter were linked to the influence of temperature and rainfall on emissions, deposition, and gas–aerosol-phase equilibrium. Seasonality in SO2 was mainly driven by emissions (combustion), with concentrations peaking in winter, except in southern Europe, where the peak occurred in summer. Particulate SO2−4 showed large peaks in concentrations in summer in southern and eastern Europe, contrasting with much smaller peaks occurring in early spring in other regions. The peaks in particulate SO2−4 coincided with peaks in NH3 concentrations, attributed to the formation of the stable (NH4)2SO4. HNO3 concentrations were more complex, related to traffic and industrial emissions, photochemistry, and HNO3:NH4NO3 partitioning. While HNO3 concentrations were seen to peak in the summer in eastern and southern Europe (increased photochemistry), the absence of a spring peak in HNO3 in all regions may be explained by the depletion of HNO3 through reaction with surplus NH3 to form the semi-volatile aerosol NH4NO3. Cooler, wetter conditions in early spring favour the formation and persistence of NH4NO3 in the aerosol phase, consistent with the higher springtime concentrations of NH+4 and NO−3. The seasonal profile of NO−3 was mirrored by NH+4, illustrating the influence of gas–aerosol partitioning of NH4NO3 in the seasonality of these components. Gas-phase NH3 and aerosol NH4NO3 were the dominant species in the total inorganic gas and aerosol species measured in the NEU network. With the current and projected trends in SO2, NOx, and NH3 emissions, concentrations of NH3 and NH4NO3 can be expected to continue to dominate...en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePan-European rural monitoring network shows dominance of NH3 gas and NH4NO3 aerosol in inorganic atmospheric pollution loaden_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© Author(s) 2021.en_US
dc.source.pagenumber875-914en_US
dc.source.volume21en_US
dc.source.journalAtmospheric Chemistry and Physicsen_US
dc.identifier.doi10.5194/acp-21-875-2021
dc.identifier.cristin1898066
dc.relation.projectEU/17841en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal