Vis enkel innførsel

dc.contributor.authorPetrescu, Ana Maria Roxana
dc.contributor.authorQiu, Chunjing
dc.contributor.authorCiais, Philippe
dc.contributor.authorThompson, Rona Louise
dc.contributor.authorPeylin, Philippe
dc.contributor.authorMcGrath, Matthew J
dc.contributor.authorSolazzo, Efisio
dc.contributor.authorJanssens-Maenhout, Greet
dc.contributor.authorTubiello, Francesco N.
dc.contributor.authorBergamaschi, Peter
dc.contributor.authorBrunner, Dominik
dc.contributor.authorPeters, Glen Philip
dc.contributor.authorHoglund-Isaksson, Lena
dc.contributor.authorRegnier, Pierre
dc.contributor.authorLauerwald, Ronny
dc.contributor.authorBastviken, David
dc.contributor.authorTsuruta, Aki
dc.contributor.authorWiniwarter, Wilfried
dc.contributor.authorPatra, Prabir K.
dc.contributor.authorKuhnert, Matthias
dc.contributor.authorOreggioni, Gabriel David
dc.contributor.authorCrippa, Monica
dc.contributor.authorSaunois, Marielle
dc.contributor.authorPerugini, Lucia
dc.contributor.authorMarkkanen, Tiina
dc.contributor.authorAalto, Tuula
dc.contributor.authorZwaaftink, Christine Groot
dc.contributor.authorYao, Yuanzhi
dc.contributor.authorWilson, Chris
dc.contributor.authorConchedda, Giulia
dc.contributor.authorGünther, Dirk
dc.contributor.authorLeip, Adrian
dc.contributor.authorSmith, Pete
dc.contributor.authorHaussaire, Jean-Matthieu
dc.contributor.authorLeppänen, Antti
dc.contributor.authorManning, Alistair J.
dc.contributor.authorMcNorton, Joe
dc.contributor.authorBrockmann, Patrick
dc.contributor.authorDolman, Albertus Johannes
dc.date.accessioned2021-06-08T07:13:34Z
dc.date.available2021-06-08T07:13:34Z
dc.date.created2021-06-01T10:43:05Z
dc.date.issued2021
dc.identifier.citationEarth System Science Data. 2021, 13, 2307-2362.en_US
dc.identifier.issn1866-3508
dc.identifier.urihttps://hdl.handle.net/11250/2758403
dc.description.abstractReliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27 + UK). We integrate recent emission inventory data, ecosystem process-based model results and inverse modeling estimates over the period 1990–2017. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported to the UN climate convention UNFCCC secretariat in 2019. For uncertainties, we used for NGHGIs the standard deviation obtained by varying parameters of inventory calculations, reported by the member states (MSs) following the recommendations of the IPCC Guidelines. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model-specific uncertainties when reported. In comparing NGHGIs with other approaches, a key source of bias is the activities included, e.g., anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. The estimates of TD total inversions give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher-resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser-resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4 yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH–HIMMELI model, natural rivers and lakes emissions, and geological sources together account for the gap between NGHGIs and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1, respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1, respectively. The TD and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at the EU+UK scale and at the national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4590875 (Petrescu et al., 2020b)en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990–2017en_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© Author(s) 2021.en_US
dc.source.pagenumber2307-2362en_US
dc.source.volume13en_US
dc.source.journalEarth System Science Dataen_US
dc.identifier.doi10.5194/essd-13-2307-2021
dc.identifier.cristin1912990
dc.relation.projectEC/H2020/725546en_US
dc.relation.projectEC/H2020/809596en_US
dc.relation.projectEC/H2020/776186en_US
dc.relation.projectNorges forskningsråd: 245927en_US
dc.relation.projectNILU - Norsk institutt for luftforskning: 116006en_US
dc.relation.projectNILU - Norsk institutt for luftforskning: 118014en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal