Vis enkel innførsel

dc.contributor.authorMori, Tatsuhiro
dc.contributor.authorKondo, Yutaka
dc.contributor.authorOhata, Sho
dc.contributor.authorGoto-Azuma, Kumiko
dc.contributor.authorFukuda, Kaori
dc.contributor.authorOgawa-Tsukagawa, Yoshimi
dc.contributor.authorMoteki, Nobuhiro
dc.contributor.authorYoshida, Atsushi
dc.contributor.authorKoike, Makoto
dc.contributor.authorSinha, P. R.
dc.contributor.authorOshima, Naga
dc.contributor.authorMatsui, Hitoshi
dc.contributor.authorTobo, Yutaka
dc.contributor.authorYabuki, Masanori
dc.contributor.authorAas, Wenche
dc.date.accessioned2021-06-18T07:18:54Z
dc.date.available2021-06-18T07:18:54Z
dc.date.created2021-06-17T10:43:12Z
dc.date.issued2021
dc.identifier.citationJournal of Geophysical Research (JGR): Atmospheres. 2021, 126, e2020JD034110.en_US
dc.identifier.issn2169-897X
dc.identifier.urihttps://hdl.handle.net/11250/2760044
dc.description.abstractBlack carbon (BC) aerosol deposited in and onto Arctic snow increases the snow's absorption of solar radiation and accelerates snowmelt. Concentrations of BC in the Arctic atmosphere and snow are controlled by wet deposition; however, details of this process are poorly understood owing to the scarcity of time-resolved measurements of BC in hydrometeors. We measured mass concentrations of BC in hydrometeors (CMBC) and in air (MBC) with 16% and 15% accuracies, respectively, at Ny-Ålesund, Svalbard during 2012–2019. Median monthly MBC and CMBC values showed similar seasonal variations, being high in winter-spring and low in summer. Median monthly BC wet deposition mass flux (FMBC) was highest in winter and lowest in summer, associated with seasonal patterns of CMBC and precipitation. Seasonally averaged BC size distributions in hydrometeors were similar except for summer. Measurements of MBC and CMBC in spring 2017 showed a size-independent removal efficiency, indicating that BC-containing particles were efficiently activated into cloud droplets. These observations at Ny-Ålesund were compared with observations at Barrow, Alaska, during 2013–2017. The near-surface MBC at Ny-Ålesund and Barrow had similar seasonal patterns; however, the two sites differed in CMBC and FMBC. In summer, CMBC was low at Ny-Ålesund but moderate at Barrow, likely reflecting differences in MBC in the lower troposphere. Seasonally averaged BC size distributions in hydrometeors were similar at both sites, suggesting that average BC size distributions are similar in the Arctic lower troposphere. The efficiency of BC removal tends to be size-independent during transport, leading to the observed similarity.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSeasonal Variation of Wet Deposition of Black Carbon at Ny-Ålesund, Svalbarden_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2021. The Authors.en_US
dc.source.pagenumber32en_US
dc.source.volume126en_US
dc.source.journalJournal of Geophysical Research (JGR): Atmospheresen_US
dc.identifier.doi10.1029/2020JD034110
dc.identifier.cristin1916341
dc.relation.projectNILU: 121002en_US
dc.source.articlenumbere2020JD034110en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal