Spatial Source Contribution and Interannual Variation in Deposition of Dust Aerosols Over the Chinese Loess Plateau
Haugvaldstad, Ove Westermoen; Tang, Hui; Kaakinen, Anu; Bohm, Katja; Zwaaftink, Christine Groot; Grythe, Henrik; Stevens, Thomas; Zhang, Zhongshi; Stordal, Frode
Peer reviewed, Journal article
Published version
Date
2024Metadata
Show full item recordCollections
- Publikasjoner fra Cristin - NILU [1407]
- Vitenskapelige publikasjoner [1138]
Original version
Journal of Geophysical Research (JGR): Atmospheres. 2024, 129 (14), 1-24. 10.1029/2023JD040470Abstract
The Chinese Loess Plateau (CLP) in northern China is home to one of the most prominent loess records in the world, reflecting past eolian dust activity in East Asia. However, their interpretation is hampered by ambiguity in the origin of loess-forming dust and an incomplete understanding of the circulation forcing dust accumulation. In this study, we used a novel modeling approach combining a dust emission model FLEXDUST with simulated back trajectories from FLEXPART to trace the dust back to where it was emitted. Over 21 years (1999–2019), we modeled back trajectories for fine (∼2 μm) and super-coarse (∼20 μm) dust particles at six CLP sites during the peak dust storm season from March to May. FLEXPART source-receptor relationships are combined with the dust emission inventory from FLEXDUST to create site-dependent high-resolution maps of the source contribution of deposited dust. The nearby dust emission areas were found to be the main source of dust to the CLP. Dust deposition across the CLP was found to predominantly occur via wet removal, with also some super-coarse dust from distant emission regions being wet deposited following high-level tropospheric transport. The high topography located on the downwind side of the emission area plays an essential role in forcing the emitted super-coarse dust upward. On an interannual scale, the phase of the Arctic Oscillation in the preceding winter was found to have a strong association with the spring deposition rate on the CLP, while the strength of the East Asian Winter Monsoon was less influential.