Vis enkel innførsel

dc.contributor.authorBalkanski, Y.
dc.contributor.authorMenut, L.
dc.contributor.authorWang, R.
dc.contributor.authorEvangeliou, Nikolaos
dc.contributor.authorJourdain, S.
dc.contributor.authorEschstruth, C.
dc.contributor.authorVrac, M
dc.contributor.authorYiou, P.
dc.date.accessioned2018-10-30T10:52:11Z
dc.date.available2018-10-30T10:52:11Z
dc.date.created2018-10-29T09:11:43Z
dc.date.issued2018
dc.identifier.citationScientific reports. 2018. 8, 15896.nb_NO
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/11250/2570114
dc.description.abstractThe 1783–1784 Laki eruption provides a natural experiment to evaluate the performance of chemistry-transport models in predicting the health impact of air particulate pollution. There are few existing daily meteorological observations during the second part of the 18th century. Hence, creating reasonable climatological conditions for such events constitutes a major challenge. We reconstructed meteorological fields for the period 1783–1784 based on a technique of analogues described in the Methods. Using these fields and including detailed chemistry we describe the concentrations of sulphur (SO2/SO4) that prevail over the North Atlantic, the adjoining seas and Western Europe during these 2 years. To evaluate the model, we analyse these results through the prism of two datasets contemporary to the Laki period: • The date of the first appearance of ‘dry fogs’ over Europe, • The excess mortality recorded in French parishes over the period June–September 1783. The sequence of appearances of the dry fogs is reproduced with a very-high degree of agreement to the first dataset. High concentrations of SO2/SO4 are simulated in June 1783 that coincide with a rapid rise of the number of deceased in French parishes records. We show that only a small part of the deceased of the summer of 1783 can be explained by the present-day relationships between PM2.5 and relative risk. The implication of this result is that other external factors such as the particularly warm summer of 1783, and the lack of health care at the time, must have contributed to the sharp increase in mortality over France recorded from June to September 1783.nb_NO
dc.language.isoengnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMortality induced by PM2.5 exposure following the 1783 Laki eruption using reconstructed meteorological fieldsnb_NO
dc.title.alternativeMortality induced by PM2.5 exposure following the 1783 Laki eruption using reconstructed meteorological fieldsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.rights.holder© The Author(s) 2018.nb_NO
dc.source.volume8nb_NO
dc.source.journalScientific Reportsnb_NO
dc.identifier.doi10.1038/s41598-018-34228-7
dc.identifier.cristin1624283
cristin.unitcode7460,57,0,0
cristin.unitnameAtmosfære og klima
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal