Vis enkel innførsel

dc.contributor.authorPommereau, Jean-Pierre
dc.contributor.authorGoutail, Florence
dc.contributor.authorPazmino, Andrea
dc.contributor.authorLefèvre, Franck
dc.contributor.authorChipperfield, Martyn P.
dc.contributor.authorFeng, Wuhu
dc.contributor.authorvan Roozendael, Michel
dc.contributor.authorJepsen, Nis
dc.contributor.authorHansen, Georg Heinrich
dc.contributor.authorKivi, Rigel
dc.contributor.authorBognar, Kristof
dc.contributor.authorStrong, Kimberly
dc.contributor.authorWalker, Kaley
dc.contributor.authorKuzmichev, Alexandr
dc.contributor.authorKhattatov, Slava
dc.contributor.authorSitnikova, Vera
dc.date.accessioned2019-02-05T10:10:44Z
dc.date.available2019-02-05T10:10:44Z
dc.date.created2018-11-20T11:03:41Z
dc.date.issued2018
dc.identifier.citationComptes rendus Geoscience. 2018, 350 347-353.nb_NO
dc.identifier.issn1631-0713
dc.identifier.urihttp://hdl.handle.net/11250/2583887
dc.description.abstractAfter the well-reported record loss of Arctic stratospheric ozone of up to 38% in the winter 2010–2011, further large depletion of 27% occurred in the winter 2015–2016. Record low winter polar vortex temperatures, below the threshold for ice polar stratospheric cloud (PSC) formation, persisted for one month in January 2016. This is the first observation of such an event and resulted in unprecedented dehydration/denitrification of the polar vortex. Although chemistry–climate models (CCMs) generally predict further cooling of the lower stratosphere with the increasing atmospheric concentrations of greenhouse gases (GHGs), significant differences are found between model results indicating relatively large uncertainties in the predictions. The link between stratospheric temperature and ozone loss is well understood and the observed relationship is well captured by chemical transport models (CTMs). However, the strong dynamical variability in the Arctic means that large ozone depletion events like those of 2010–2011 and 2015–2016 may still occur until the concentrations of ozone-depleting substances return to their 1960 values. It is thus likely that the stratospheric ozone recovery, currently anticipated for the mid-2030s, might be significantly delayed. Most important in order to predict the future evolution of Arctic ozone and to reduce the uncertainty of the timing for its recovery is to ensure continuation of high-quality ground-based and satellite ozone observations with special focus on monitoring the annual ozone loss during the Arctic winter.nb_NO
dc.description.abstractnb_NO
dc.language.isoengnb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleRecent Arctic ozone depletion: Is there an impact of climate change?nb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.rights.holder© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license.nb_NO
dc.source.pagenumber347-353nb_NO
dc.source.volume350nb_NO
dc.source.journalComptes rendus Geosciencenb_NO
dc.identifier.doi10.1016/j.crte.2018.07.009
dc.identifier.cristin1632524
dc.relation.projectNILU - Norsk institutt for luftforskning: 113007nb_NO
cristin.unitcode7460,57,0,0
cristin.unitnameAtmosfære og klima
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal