Vis enkel innførsel

dc.contributor.authorPerrone, M. R.
dc.contributor.authorDe Tomasi, F.
dc.contributor.authorStohl, Andreas
dc.contributor.authorKristiansen, Nina Iren
dc.date.accessioned2020-04-14T12:35:33Z
dc.date.available2020-04-14T12:35:33Z
dc.date.created2012-12-19T14:32:56Z
dc.date.issued2012
dc.identifier.citationAtmospheric Chemistry and Physics. 2012, 12 (20), 10001-10013.en_US
dc.identifier.issn1680-7316
dc.identifier.urihttps://hdl.handle.net/11250/2651003
dc.description.abstractVolcanic aerosols resulting from the Eyjafjallajökull eruption were detected in south-eastern Italy from 20 to 22 April 2010, at a distance of approximately 4000 km from the volcano, and have been characterized by lidar, sun/sky photometer, and surface in-situ measurements. Volcanic particles added to the pre-existing aerosol load and measurement data allow quantifying the impact of volcanic particles on the aerosol vertical distribution, lidar ratios, the aerosol size distribution, and the ground-level particulate-matter concentrations. Lidar measurements reveal that backscatter coefficients by volcanic particles were about one order of magnitude smaller over south-eastern Italy than over Central Europe. Mean lidar ratios at 355 nm were equal to 64 ± 5 sr inside the volcanic aerosol layer and were characterized by smaller values (47 ± 2 sr) in the underlying layer on 20 April, 19:30 UTC. Lidar ratios and their dependence with the height reduced in the following days, mainly because of the variability of the volcanic particle contributions. Size distributions from sun/sky photometer measurements reveal the presence of volcanic particles with radii r > 0.5 μm on 21 April and that the contribution of coarse volcanic particles increased from 20 to 22 April. The aerosol fine mode fraction from sun/sky photometer measurements varied between values of 0.85 and 0.94 on 20 April and decreased to values between 0.25 and 0.82 on 22 April. Surface measurements of particle size distributions were in good accordance with column averaged particle size distributions from sun/sky photometer measurements. PM1/PM2.5 mass concentration ratios of 0.69, 0.66, and 0.60 on 20, 21, and 22 April, respectively, support the increase of super-micron particles at ground. Measurements from the Regional Air Quality Agency show that PM10 mass concentrations on 20, 21, and 22 April 2010 were enhanced in the entire Apulia Region. More specifically, PM10 mass concentrations have on average increased over Apulia Region 22%, 50%, and 28% on 20, 21, and 22 April, respectively, compared to values on 19 April. Finally, the comparison of measurement data with numerical simulations by the FLEXPART dispersion model demonstrates the ability of FLEXPART to model the advection of the volcanic ash over the 4000 km from the Eyjafjallajökull volcano to Southern Italy.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleIntegration of measurements and model simulations to characterize Eyjafjallajokull volcanic aerosols over south-eastern Italyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© Author(s) 2012.en_US
dc.source.pagenumber10001-10013en_US
dc.source.volume12en_US
dc.source.journalAtmospheric Chemistry and Physicsen_US
dc.source.issue20en_US
dc.identifier.doi10.5194/acp-12-10001-2012
dc.identifier.cristin976069
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal