Vis enkel innførsel

dc.contributor.authorMarécal, Virginie
dc.contributor.authorVoisin-Plessis, Ronan
dc.contributor.authorRoberts, Tarda Jane
dc.contributor.authorAiuppa, Alessandro
dc.contributor.authorNarivelo, Herizo
dc.contributor.authorHamer, Paul David
dc.contributor.authorJosse, Beatrice
dc.contributor.authorGuth, Jonathan
dc.contributor.authorSurl, Luke
dc.date.accessioned2023-06-07T10:49:52Z
dc.date.available2023-06-07T10:49:52Z
dc.date.created2023-05-31T09:08:52Z
dc.date.issued2023
dc.identifier.citationGeoscientific Model Development. 2023, 16, 2873-2898.en_US
dc.identifier.issn1991-959X
dc.identifier.urihttps://hdl.handle.net/11250/3070334
dc.description.abstractHBr emissions from volcanoes lead rapidly to the formation of BrO within volcanic plumes and have an impact on tropospheric chemistry, at least at the local and regional scales. The motivation of this paper is to prepare a framework for further 3D modelling of volcanic halogen emissions in order to determine their fate within the volcanic plume and then in the atmosphere at the regional and global scales. The main aim is to evaluate the ability of the model to produce a realistic partitioning of bromine species within a grid box size typical of MOCAGE (Model Of atmospheric Chemistry At larGE scale) 3D (0.5∘ × 0.5∘). This work is based on a 1D single-column configuration of the global chemistry-transport model MOCAGE that has low enough computational cost to allow us to perform a large set of sensitivity simulations. This paper uses the emissions from the Mount Etna eruption on 10 May 2008. Several reactions are added to MOCAGE to represent the volcanic plume halogen chemistry. A simple plume parameterisation is also implemented and tested. The use of this parameterisation tends to only slightly limit the efficiency of BrO net production. Both simulations with and without the parameterisation give results for the partitioning of the bromine species, of ozone depletion and of the ratio that are consistent with previous studies. A series of test experiments were performed to evaluate the sensitivity of the results to the composition of the emissions (primary sulfate aerosols, Br radical and NO) and to the effective radius assumed for the volcanic sulfate aerosols. Simulations show that the plume chemistry is sensitive to all these parameters. We also find that the maximum altitude of the eruption changes the BrO production, which is linked to the vertical variability of the concentrations of oxidants in the background air. These sensitivity tests display changes in the bromine chemistry cycles that are generally at least as important as the plume parameterisation. Overall, the version of the MOCAGE chemistry developed for this study is suitable to produce the expected halogen chemistry in volcanic plumes during daytime and night-time.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleHalogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modellingen_US
dc.title.alternativeHalogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modellingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© Author(s) 2023.en_US
dc.source.pagenumber2873-2898en_US
dc.source.volume16en_US
dc.source.journalGeoscientific Model Developmenten_US
dc.identifier.doi10.5194/gmd-16-2873-2023
dc.identifier.cristin2150347
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal