Show simple item record

dc.contributor.authorLaw, Kathy S.
dc.contributor.authorHjorth, Jens Liengaard
dc.contributor.authorPernov, Jakob B.
dc.contributor.authorWhaley, Cynthia
dc.contributor.authorSkov, Henrik
dc.contributor.authorCoen, Martine Collaud
dc.contributor.authorLangner, Joakim
dc.contributor.authorArnold, Stephen R.
dc.contributor.authorTarasick, David
dc.contributor.authorChristensen, Jesper
dc.contributor.authorDeushi, Makoto
dc.contributor.authorEffertz, Peter
dc.contributor.authorFaluvegi, Greg
dc.contributor.authorGauss, Michael
dc.contributor.authorIm, Ulas
dc.contributor.authorOshima, Naga
dc.contributor.authorPetropavlovskikh, Irina
dc.contributor.authorPlummer, David
dc.contributor.authorTsigaridis, Kostas
dc.contributor.authorTsyro, Svetlana
dc.contributor.authorSolberg, Sverre
dc.date.accessioned2023-12-04T08:13:16Z
dc.date.available2023-12-04T08:13:16Z
dc.date.created2023-11-22T13:00:46Z
dc.date.issued2023
dc.identifier.citationGeophysical Research Letters. 2023, 50, e2023GL103096.en_US
dc.identifier.issn0094-8276
dc.identifier.urihttps://hdl.handle.net/11250/3105708
dc.description.abstractObserved trends in tropospheric ozone, an important air pollutant and short-lived climate forcer (SLCF), are estimated using available surface and ozonesonde profile data for 1993–2019, using a coherent methodology, and compared to modeled trends (1995–2015) from the Arctic Monitoring Assessment Program SLCF 2021 assessment. Increases in observed surface ozone at Arctic coastal sites, notably during winter, and concurrent decreasing trends in surface carbon monoxide, are generally captured by multi-model median trends. Wintertime increases are also estimated in the free troposphere at most Arctic sites, with decreases during spring months. Winter trends tend to be overestimated by the multi-model medians. Springtime surface ozone increases in northern coastal Alaska are not simulated while negative springtime trends in northern Scandinavia are not always reproduced. Possible reasons for observed changes and model performance are discussed including decreasing precursor emissions, changing ozone dry deposition, and variability in large-scale meteorology.en_US
dc.description.abstractArctic Tropospheric Ozone Trendsen_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleArctic Tropospheric Ozone Trendsen_US
dc.title.alternativeArctic Tropospheric Ozone Trendsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023. The Authors.en_US
dc.source.volume50en_US
dc.source.journalGeophysical Research Lettersen_US
dc.identifier.doi10.1029/2023GL103096
dc.identifier.cristin2200248
dc.relation.projectNILU: 7726en_US
dc.relation.projectAMAP: 2020-18en_US
dc.source.articlenumbere2023GL103096en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal