Vis enkel innførsel

dc.contributor.authorKaczmarzyk, Iwona
dc.contributor.authorBanasiak, Mariusz
dc.contributor.authorJakobczyk, Pawel
dc.contributor.authorSobaszek, Michał Sobaszek
dc.contributor.authorStrugala, Gabriel
dc.contributor.authorSeramak, Tomasz
dc.contributor.authorRostkowski, Pawel
dc.contributor.authorKarczewski, Jakub
dc.contributor.authorSawczak, Mirosław
dc.contributor.authorRyl, Jacek
dc.contributor.authorBogdanowicz, Robert
dc.date.accessioned2024-01-08T14:38:22Z
dc.date.available2024-01-08T14:38:22Z
dc.date.created2023-12-22T12:57:22Z
dc.date.issued2024
dc.identifier.citationDiamond and Related Materials. 2024, 141, 110673.en_US
dc.identifier.issn0925-9635
dc.identifier.urihttps://hdl.handle.net/11250/3110428
dc.description.abstractAn extraordinary charge transfer kinetics and chemical stability make a boron-doped diamond (BDD) a promising material for electrochemical applications including wastewater treatment. Yet, with flat geometrical surfaces its scaling options are limited. In this study, the reticulated Vitreous Carbon (RVC) served as a substrate for boron-doped diamondized nanocarbons (BDNC) film growth resulting with complex heterogeneity carbon structures with different morphologies defined by using electron microscopy, microtomography, activation energy studies, and Raman spectroscopy. The proposed modification significantly boosted the electrochemical Fe(CN)63−/4− redox activity. The voltammetry and impedimetric studies revealed its origin as a significantly higher share of electrochemically active sites at the BDNC@RVC electrode (increased by 114 %) combined with enhanced heterogeneous rate constant (2× increase up to 8.24·10−4 cm s−1). Finally, to establish its applicability for water treatment, the BDNC@RVC was studied as the anode in electrochemical paracetamol decomposition. Boron-enriched nanoarchitecture formed at the RVC electrode surface substantially reduced the oxidation energy barrier manifested as a decrease in activation overpotential by 212 mV, which gave a consequence in a 78 % removal rate (in 4 h, at 0.7 mA cm−2), 12 % higher than bare RVC and yielding lower amounts of APAP decomposition intermediates.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEnhanced electrochemical activity of boron-doped nanocarbon functionalized reticulated vitreous carbon structures for water treatment applicationsen_US
dc.title.alternativeEnhanced electrochemical activity of boron-doped nanocarbon functionalized reticulated vitreous carbon structures for water treatment applicationsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Authors. Published by Elsevier B.V.en_US
dc.source.volume141en_US
dc.source.journalDiamond and related materialsen_US
dc.identifier.doi10.1016/j.diamond.2023.110673
dc.identifier.cristin2217260
dc.relation.projectNILU: 120133en_US
dc.source.articlenumber110673en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal